Advertisement

Granular Matter

, Volume 15, Issue 6, pp 801–810 | Cite as

Air invasion in a granular layer immersed in a fluid: morphology and dynamics

  • Germán Varas
  • Jean-Christophe Géminard
  • Valérie VidalEmail author
Original Paper

Abstract

We investigate the morphology and dynamics of the region invaded by air injected at the bottom of an immersed granular bed. Previous experimental results point out the formation of a fluidized zone with a parabolic shape which does not depend, in the stationary regime, on the injection flow-rate. By tilting the experiment, we can tune the effective gravity in the system. We show that it does not affect significantly the morphology either. A numerical study made it possible to access the typical height and width of the structure, which are governed by the relative effects of gravity and capillarity. After a brief review on this subject, we propose first, new experimental observations on the air invasion regimes and on the morphology of the fluidized zone, in particular its growth dynamics; then, we complement the previous numerical study by considering the influence of the bottom boundary condition. In particular, we quantify the morphology of the invaded region when the gas is injected in the bulk, thus when air is likely to propagate downwards. These results are of practical importance in the prediction of the morphology of gas invasion in soils, from \(\hbox {CO}_2\) sequestration to pollutant propagation.

Keywords

Granular flow Fluidization Patterns 

References

  1. 1.
    Mörz, T., Karlik, E.A., Kreiter, S., Kopf, A.: An experimental setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sediment. Geol. 196, 251–267 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Naudts, L., Greinert, J., Artemov, Y., Beaubien, S.E., Borowski, C., De Batist, M.: Anomalous sea-floor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea. Mar. Geol. 251, 253–267 (2008)CrossRefGoogle Scholar
  3. 3.
    Semer, R., Adams, J.A., Reddy, K.R.: An experimental investigation of air flow patterns in saturated soils during air sparging. Geotech. Geol. Eng. 16, 59–75 (1998)CrossRefGoogle Scholar
  4. 4.
    Nermoen, A., Galland, O., Jettestuen, E., Fristad, K., Podladchikov, Y., Svensen, H., Malthe-Sørenssen, A.: Experimental and analytic modeling of piercement structures. J. Geophys. Res. 115, B10202 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Walters, A.L., Phillips, J., Brown, R.J., Field, M., Gernon, T., Stripp, G., Sparks, R.S.J.: The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J. Volcanol. Geotherm. Res. 155, 119–137 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Planke, S., Svensen, H., Hovland, M., Banks, D.A., Jamtveit, B.: Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo. Mar. Lett. 23, 258–268 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Svensen, H., Jamtveit, B., Planke, S., Chevallier, L.: Structure and evolution of hydrothermal vent complexes in the Karoo basin, South Africa. J. Geol. Soc. 163, 671–682 (2006)CrossRefGoogle Scholar
  8. 8.
    Hovland, M., Talbot, M., Qvale, H., Olaussen, S., Aasberg, L.: Methane-related carbonate cements in pockmarks of the North Sea. J. Sediment. Petrol. 88, 881–892 (1987)Google Scholar
  9. 9.
    Wilhelm, T., Wilmański, K.: On the onset of flow instabilities in granular media due to porosity inhomogeneities. Int. J. Multiphase Flow 28, 1929–1944 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rigord, P., Guarino, A., Vidal, V., Géminard, J.-C.: Localized instability of a granular layer submitted to an ascending liquid flow. Gran. Matt. 7, 191–197 (2005)CrossRefGoogle Scholar
  11. 11.
    Zoueshtiagh, F., Merlen, A.: Effects of a vertically flowing water jet underneath a granular bed. Phys. Rev. E 75, 056313 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Eden, M.: A two-dimensional growth process, 4th Berkeley Symposium, pp. 223–239. University of California Press, Berkeley (1961)Google Scholar
  13. 13.
    Vold, M.J.: Computer simulation of floc formation in a colloidal suspension. J. Colloid Sci. 18, 684–695 (1963)CrossRefGoogle Scholar
  14. 14.
    Sutherland, D.N.: Comment on Vold’s simulation of floc formation. J. Colloid Interface Sci. 22, 300–302 (1966)CrossRefGoogle Scholar
  15. 15.
    Witten, Jr. T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)Google Scholar
  16. 16.
    Meakin, P.: The Vold-Sutherland and Eden models of cluster formation. J. Colloid Interface Sci. 96, 415–424 (1983)CrossRefGoogle Scholar
  17. 17.
    Martín, H., Vannimenus, J., Nadal, J.P.: From invasion to Eden growth: a family of models for cluster growth in a random environment. Phys. Rev. A 30, 3205–3213 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., Yortsos, Y.C.: Invasion percolation in a hydrostatic or permeability gradient: experiments and simulations. Phys. Rev. E 49, 4133–4139 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K.J., Aharony, A.: Gravity invasion percolation in two dimensions: experiments and simulation. Phys. Rev. Lett. 67, 584–587 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Meakin, P., Feder, J., Frette, V., Jøssang, T.: Invasion percolation in a destabilizing gradient. Phys. Rev. A 46, 3357–3368 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    Bo, Z., Loggia, D., Xiaorong, L., Vasseur, G., Ping, H.: Numerical studies of gravity destabilized percolation in 2D porous media. Eur. Phys. J. B 50, 631–637 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Chevalier, C., Lindner, A., Leroux, M., Clément, E.: Morphodynamics during air injection into a confined granular suspension. J. Non-Newton. Fluid Mech. 158, 63–72 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sandnes, B., Flekkøy, E.G., Knudsen, H.A., Måløy, K.J., See, H.: Patterns and flow in frictional fluid dynamics. Nat. Commun. 2, 288–296 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Varas, G., Vidal, V., Géminard, J.-C.: Venting dynamics of an immersed granular layer. Phys. Rev. E 83, 011302 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Varas, G., Vidal, V., Géminard, J.-C.: Morphology of air invasion in an immersed granular layer. Phys. Rev. E 83, 061302 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Lake, W.L.: Enhanced Oil Recovery. Prentice Hall, New Jersey (1989)Google Scholar
  27. 27.
    Eccles, J.K., Pratson, L., Newell, R.G., Jackson, R.B.: Physical and economic potential of geological CO\(_2\) storage in saline aquifers. Environ. Sci. Technol. 43, 1962–1969 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Romanov, V.N., Ackman, T.E., Soong, Y., Kleinman, R.L.: \(\text{ CO }_2\) storage in shallow underground and surface coal mines: challenges and opportunities. Environ. Sci. Technol. 43, 561–564 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Kang, Q., Tsimpanogiannis, I.N., Zhang, D., Lichtner, P.C.: Numerical modeling of pore-scale phenomena during \(\text{ CO }_2\) sequestration in oceanic sediments. Fuel Process. Technol. 86, 1647–1665 (2005)CrossRefGoogle Scholar
  30. 30.
    Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eldem, T.R., Rey, S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Kong, X.-Z., Kinzelbach, W., Stauffer, F.: Morphodynamics during air injection into water-saturated movable spherical granulates. Chem. Eng. Sci. 65, 4652–46660 (2010)Google Scholar
  32. 32.
    Melo, F., Vivanco, F., Fuentes, C., Apablaza, V.: On drawbody shapes: from BergmarkRoos to kinematic models. Int. J. Rock Mech. Mining Sci. 44, 77–86 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Germán Varas
    • 1
    • 2
  • Jean-Christophe Géminard
    • 2
  • Valérie Vidal
    • 2
    Email author
  1. 1.Instituto de FísicaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Laboratoire de PhysiqueUniversité de Lyon, Ecole Normale Supérieure, CNRSLyon Cedex 07France

Personalised recommendations