Granular Matter

, Volume 15, Issue 6, pp 771–781 | Cite as

Density variations in dry granular avalanches

  • Louis Bugnion
  • Marius Schaefer
  • Perry BarteltEmail author
Original Paper


Dry granular avalanches exhibit bulk density variations. Understanding the physical mechanisms behind these density variations is especially important in the study of geophysical flows such as snow and rock avalanches. We performed small-scale chute experiments with glass beads to investigate how bulk density changes, measuring velocity profiles, flow height and basal normal stress in an Eulerian measurement frame. The chute inclination and the starting volume of glass beads were systematically varied. From the flow height and basal normal stress data, we could compute the depth-averaged density at the measurement location during the passing of the avalanches. We observed that the depth-averaged density is not constant, varying with chute inclination and starting volume. Furthermore, the depth-averaged density varies from the head to the tail within a single avalanche. We model changes in density by accounting for the energy associated with the velocity fluctuations of the grains, the density and the velocity fluctuations being related by the constitutive relation for the normal stress. We propose expressions for the conduction and decay coefficients of the fluctuation energy which allow us to model the observed density variations in the experiments.


Density measurement  Finite-sized granular avalanches Glass beads  Chute experiment 


  1. 1.
    Christen, M., Kowalski, J., Bartelt, P.: Numerical simulation of avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–14 (2010)Google Scholar
  2. 2.
    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Louge, M., Steiner, R., Keast, S., Decker, R., Dent, J., Schneebeli, M.: Application of capacitance instrumentation to the measurement of density and velocity of flowing snow. Cold Reg. Sci. Technol. 25(1), 47–63 (1997)CrossRefGoogle Scholar
  4. 4.
    Dent, J.D., Burrell, K.J., Schmidt, D.S., Louge, M.Y., Adams, E.E., Jazbutis, T.G.: Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 26, 247–252 (1998)ADSGoogle Scholar
  5. 5.
    Sovilla, B., Schaer, M., Kern, M., Bartelt, P.: Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res. 113, F01010 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Bartelt, P., McArdell, B.: Granulometric investigations of snow avalanches. J. Glaciol. 55(193), 829–833 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Bagnold, R.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 225, 49–63 (1954)ADSCrossRefGoogle Scholar
  8. 8.
    Boyer, F., Guazzelli, E., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Savage, S.B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92(1), 53–96 (1979)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62, 8349 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Andreotti, B., Daerr, A., Douady, S.: Scaling laws in granular flows down a rough plane. Phys. Fluids 14(1), 415–418 (2002)Google Scholar
  13. 13.
    Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Silbert, L.E., Ertas, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech. 134, 401–430 (1983)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Jenkins, M.T., McTigue, D.F.: Transport processes in concentrated suspensions: the role of particle fluctuations. Inst. Math. Appl. 26, 70 (1990)Google Scholar
  17. 17.
    Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3489 (1985)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Goldhirsch, I., Tan, M.L.: The single particle distribution function for rapid granular shear flows of smooth inelastic disks. Phys. Fluids 8, 1752–1763 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Savage, S.B.: Granular flows down rough inclines—review and extension. In: Jenkins, J. T., Satake, M. (eds.) Mechanics of granular materials: new models and constitutive relations, pp. 261–282. Elsevier, Amsterdam (1983)Google Scholar
  20. 20.
    Schaefer, M., Bugnion, L., Kern, M., Bartelt, P.: Position dependent velocity profiles in granular avalanches. Granul. Matter 12(3), 327–336 (2010)CrossRefGoogle Scholar
  21. 21.
    Jaeger, H.M., Nagel, S.R.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1274 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    D’Anna, G., Mayor, P., Barrat, A., Loreto, V., Nori, F.: Observing brownian motion in vibration-fluidized granular matter. Nature 424, 909–912 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid. Mech. 35, 267–297 (2003)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Son, R., Perez, J.A., Voth, G.A.: Experimental measurements of the collapse of a two-dimensional granular gas under gravity. Phys. Rev. E, 041302 (2008)Google Scholar
  25. 25.
    Landau, L., Lifchitz, E.: Mécanique des fluides, Editions de Moscou, Collection Physique théorique, vol. 6 (1971)Google Scholar
  26. 26.
    Richman, M.W.: Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227–240 (1988)CrossRefGoogle Scholar
  27. 27.
    Forterre, Y., Pouliquen, O.: Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361–387 (2002)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Woodhouse, M.J., Hogg, A.J., Sellar, A.A.: Rapid granular flows down inclined planar chutes. J. Fluid Mech. 652, 427–460 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
  2. 2.Instituto de Ciencias Físicas y Matemáticas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations