Granular Matter

, Volume 16, Issue 3, pp 377–382 | Cite as

Effective wall slip in chutes and channels: experiments and discrete element simulations

  • Riccardo Artoni
  • Andrea Santomaso
Original Paper


Wall slip is an important phenomenon for the flow of granular materials in chutes and channels. The appearance of a slip velocity at the wall critically affects wall stresses and flow profiles, and particularly the total flowrate. In this work we show, through numerical simulations and experiments, that the global slip phenomenon at a wall has peculiar features which deviate significantly from simple sliding behavior. At first we present experimental data for the vertical chute flow which highlight that wall slip depends on many operating and system variables such as flow rate, material properties, wall properties. Secondly, we resume a large campaign of numerical data performed in 2D with polygonal particles, and try to analyse the effect of material properties, contact parameters, operating variables, different flow configurations, on the slip phenomenon. The numerical campaign allowed to identify the main parameters affecting the wall slip behavior of a numerical model of granular flow, providing the ingredients for the creation of a framework for the description of wall slip.


Dense granular flows Wall slip Scaling laws Experiments Discrete numerical simulations 



RA wishes to thank P. Richard for helpful discussions.


  1. 1.
    Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341 (2004)Google Scholar
  2. 2.
    Richman, M.W., Chou, C.S.: Boundary effects on granular shear flows of smooth disks. J. Appl. Math. Phys. (ZAMP) 39, 885 (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Artoni, R., Santomaso, A., Canu, P.: Effective boundary conditions for dense granular flows. Phys. Rev. E 79(3), 031304 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Moucheront, P., Bertrand, F., Koval, G., Tocquer, L., Rodts, S., Roux, J.-N., Corfdir, A., Chevoir, F.: MRI investigation of granular interface rheology using a new cylinder shear apparatus. Magn. Reson. Imaging 28, 910–918 (2010)Google Scholar
  5. 5.
    Koval, G., Chevoir, F., Roux, J.-N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granul. Matter. 13, 525–540 (2011)Google Scholar
  6. 6.
    Shojaaee, Z., Brendel, L., Trk, J., Wolf, D.E.: Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction. Phys. Rev. E 86, 011302 (2012)Google Scholar
  7. 7.
    Azéma, E., Descantes, Y., Roquet, N., Roux, J.-N., Chevoir, F.: Discrete simulation of dense flows of polyhedral grains down a rough inclined plane. Phys. Rev. E 86, 031303 (2012)Google Scholar
  8. 8.
    Artoni, R., Santomaso, A., Go’, M., Canu, P.: Scaling laws for the slip velocity in dense granular flows. Phys. Rev. Lett. 108, 238002 (2012)Google Scholar
  9. 9.
  10. 10.
    Nedderman, R.M., Laohakul, C.: The thickness of the shear zone of flowing granular materials. Powder Technol. 25, 91 (1980)Google Scholar
  11. 11.
    Natarajan, V.V.R., Hunt, M.L., Taylor, E.D.: Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1 (1995)Google Scholar
  12. 12.
    Navier, C.: Memore sur les lois de comportement des fluides. Mem. Acad. Roy. Inst. Sci. (1823)Google Scholar
  13. 13.
    Jean, M.: The non smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235 (1999)Google Scholar
  14. 14.
    Renouf, M., Dubois, F., Alart, P.: A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Math. 168(1–2), 375 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.L’UNAM/IFSTTARBouguenaisFrance
  2. 2.Dipartimento di Ingegneria IndustrialeUniversità di PadovaPadovaItaly

Personalised recommendations