Granular Matter

, Volume 15, Issue 5, pp 531–542 | Cite as

Strength of non-spherical particles with anisotropic geometries under triaxial and shearing loading configurations

  • S. A. Galindo-Torres
  • D. M. Pedroso
  • D. J. Williams
  • H. B. Mühlhaus
Original Paper

Abstract

This paper presents a study on the macroscopic shear strength characteristics of granular assemblies with three- dimensional complex-shaped particles. Different assemblies are considered, with both isotropic and anisotropic particle geometries. The study is conducted using the discrete element method (DEM), with so-called sphero-polyhedral particles, and simulations of mechanical true triaxial tests for a range of Lode angles and confining pressures. The observed mathematical failure envelopes are investigated in the Haigh–Westergaard stress space, as well as on the deviatoric-mean pressure plane. It is verified that the DEM with non-spherical particles produces results that are qualitatively similar to experimental data and previous numerical results obtained with spherical elements. The simulations reproduce quite well the shear strength of assemblies of granular media, such as higher strength during compression than during extension. In contrast, by introducing anisotropy at the particle level, the shear strength parameters are greatly affected, and an isotropic failure criterion is no longer valid. It is observed that the strength of the anisotropic assembly depends on the direction of loading, as observed for real soils. Finally simulations on a virtual shearing test show how the velocity profile within the shear band is also affected by the grain’s shape.

Keywords

Complex shaped grains Failure criteria Discrete element method 

References

  1. 1.
    Scott, R.: Constitutive relations for soils: Present and future. In: Constitutive Equations for Granular Non-cohesive Soils, pp. 723–726. Balkema (1988)Google Scholar
  2. 2.
    Tejchman, J., Bauer, E.: Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comput. Geotech. 19(3), 221–244 (1996)CrossRefGoogle Scholar
  3. 3.
    Mühlhaus, H., Moresi, L., Cada, M.: Emergent anisotropy and flow alignment in viscous rock. Pure Appl. Geophys. 161(11), 2451–2463 (2004)ADSGoogle Scholar
  4. 4.
    Mühlhaus, H., Dufour, F., Moresi, L., Hobbs, B.: A director theory for visco-elastic folding instabilities in multilayered rock. Int. J. Solids Struct. 39(13), 3675–3691 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Kolymbas, D., Wagner, P., Blioumi, A.: Cavity expansion in cross-anisotropic rock. Int. J. Numer. Anal. Methods Geomech. 36(2), 128–139 (2012)CrossRefGoogle Scholar
  6. 6.
    Galindo-Torres, S., Pedroso, D.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(6 Pt 1), 061,303 (2010)CrossRefGoogle Scholar
  7. 7.
    Pea, A., Garca-Rojo, R., Herrmann, H.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007). doi:10.1007/s10035-007-0038-2 CrossRefGoogle Scholar
  8. 8.
    Alonso-Marroquín, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83(1), 14, 001 (2008). doi:10.1209/0295-5075/83/14001 CrossRefGoogle Scholar
  9. 9.
    Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Galindo-Torres, S.A., Marroquín, F., Wang, Y., Pedroso, D.M., Castaño, J.: Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79(6), 60,301 (2009)CrossRefGoogle Scholar
  11. 11.
    Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.A., Ramaioli, M., Liebling, T.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2–3), 119–126 (2005)CrossRefMATHGoogle Scholar
  12. 12.
    Pournin, L., Liebling, T.: A generalization of distinct element method to tridimentional particles with complex shapes. In: Powders and Grains 2005, pp. 1375–1478. Balkema, Leiden (2005)Google Scholar
  13. 13.
    Pournin, L.: On the behavior of spherical and non-spherical grain assemblies, its modeling and numerical simulation. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2005)Google Scholar
  14. 14.
    Pournin, L., Liebling, T.M.: From spheres to spheropolyhedra: generalized distinct element methodology and algorithm analysis. In: Research Trends in Combinatorial Optimization, pp. 347–363. Springer, Berlin (2009)Google Scholar
  15. 15.
    Boton, M., Azéma, E., Estrada, N., Radjaï, F., Lizcano, A.: Quasistatic rheology and microstructural description of sheared granular materials composed of platy particles. Phys. Rev. E 87, 032,206 (2013). doi:10.1103/PhysRevE.87.032206 CrossRefGoogle Scholar
  16. 16.
    Rycroft, C.: Voro++: a three-dimensional voronoi cell library in c++. Chaos 19, 041,111 (2009)CrossRefGoogle Scholar
  17. 17.
    Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw Hill, New York (1968)Google Scholar
  18. 18.
    Davis, R.O., Selvadurai, A.P.S.: Plasticity and Geomechanics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  19. 19.
    Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. JSCE 232, 59–70 (1974)Google Scholar
  20. 20.
    Lade, P.V., Duncan, J.M.: Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div. (ASCE) 99(10), 793–812 (1973)Google Scholar
  21. 21.
    Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(2), 021,301 (2008). doi:10.1103/PhysRevE.78.021301 CrossRefGoogle Scholar
  22. 22.
    Jiang, M., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005). doi:10.1016/j.compgeo.2005.05.001 CrossRefGoogle Scholar
  23. 23.
    Iwashita, K., Oda, M.: Rolling resistance at contacts in the simulation of shear band development by DEM. J. Eng. Mech. ASCE 124(3), 285–292 (1998)CrossRefGoogle Scholar
  24. 24.
    Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009). doi:10.1016/j.compgeo.2008.02.003 CrossRefGoogle Scholar
  25. 25.
    Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. 71(3), 350–358 (2004). doi:10.1115/1.1753266 ADSCrossRefMATHGoogle Scholar
  26. 26.
    Azéma, E., Radjaï, F.: Stress–strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81(5), 051,304 (2010). doi:10.1103/PhysRevE.81.051304 CrossRefGoogle Scholar
  27. 27.
    Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. 71(3), 350–358 (2004). doi:10.1115/1.1753266 ADSCrossRefMATHGoogle Scholar
  28. 28.
    Galindo-Torres, S., Pedroso, D.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(6 Pt 1), 061,303 (2010)CrossRefGoogle Scholar
  29. 29.
    Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 011,306 (2011). doi:10.1103/PhysRevE.84.011306 CrossRefGoogle Scholar
  30. 30.
    Nakai, T.: An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses. Soils Found. 29(1), 119–137 (1989)CrossRefGoogle Scholar
  31. 31.
    Mortara, G.: A yield criterion for isotropic and cross-anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 34(9), 953–977 (2010). doi:10.1002/nag.846 MATHGoogle Scholar
  32. 32.
    Gao, Z., Zhao, J., Yao, Y.: A generalized anisotropic failure criterion for geomaterials. Int. J. Solids Struct. 47(22–23), 3166–3185 (2010). doi:10.1016/j.ijsolstr.2010.07.016 CrossRefMATHGoogle Scholar
  33. 33.
    Kirkgard, M.M., Lade, P.V.: Anisotropic three-dimensional behaviour of a normally consolidated clay. Can. Geotech. J. 30(4), 848–858 (1993)CrossRefGoogle Scholar
  34. 34.
    Mühlhaus, H., Moresi, L., Hobbs, B., Dufour, F.: Large amplitude folding in finely layered viscoelastic rock structures. Pure Appl. Geophys. 159(10), 2311–2333 (2002)Google Scholar
  35. 35.
    Liu, X., Papon, A., Muhlhaus, H.: Numerical study of structural evolution in shear band. Philos. Mag. 92(28–30), 3501–3519 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Galindo-Torres, S., Muñoz, J., Alonso-Marroquín, F.: Minkowski–Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82(5), 56,713 (2010) Google Scholar
  37. 37.
    Alonso-Marroquín, F., Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031,306 (2006)CrossRefGoogle Scholar
  38. 38.
    Tordesillas, A., Peters, J., Gardiner, B.: Shear band evolution andaccumulated microstructural development in Cosserat media. Int. J. Numer. Anal. M. Geomech. 28(10), 981–1010 (2004)Google Scholar
  39. 39.
    MiDia, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)CrossRefGoogle Scholar
  40. 40.
    Galindo-Torres, S., Lizcano, A., Muñoz, J.: Effect of frictional heat dissipation on the loss of soil strength. Phys. Rev. E 86(6), 061,302 (2012)CrossRefGoogle Scholar
  41. 41.
    Masson, S., Martinez, J.: Micromechanical analysis of the shear behavior of a granular material. J. Eng. Mech. 127(10), 1007–1016 (2001)CrossRefGoogle Scholar
  42. 42.
    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. A. Galindo-Torres
    • 1
    • 2
  • D. M. Pedroso
    • 2
  • D. J. Williams
    • 2
  • H. B. Mühlhaus
    • 3
  1. 1.National Centre for Groundwater Research and Training, School of Civil EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Geotechnical Engineering Centre, School of Civil EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.Earth System Science Computational CentreThe University of QueenslandBrisbaneAustralia

Personalised recommendations