Granular Matter

, Volume 15, Issue 5, pp 543–556 | Cite as

Strength and deformation characteristics of a locked sand at low effective stresses

  • Athma R. Bhandari
  • William Powrie
Original Paper


This paper describes the results of triaxial compression tests carried out at effective cell pressures ranging from 12.5 to 100 kPa to investigate the influence of fabric structure on the yield and failure of intact Reigate silver sand. In some of the tests, a digital image-based technique was used to determine the instant of onset of strain localisation, and the distribution of strain localisations within the specimen as overall deformation progressed. Comparative tests on intact and reconstituted specimens showed that fabric structure in the intact material allows the mobilisation of stress ratios close to peak before the onset of dilation, and increases the shear modulus at a given effective cell pressure and strain. Localisation was found to start at or after the onset of dilation, with a tendency to delay at increasing effective cell pressure. More localised deformation was observed at low effective cell pressures. Consistency between the critical state strengths of intact and reconstituted specimens is demonstrated, provided that the effect of shear band geometry is taken into account in stress analysis.


Deformation Laboratory tests  Fabric structure  Natural sands Shear strength  Small strains Stiffness Strain localisation  Stress-dilatancy 



The research project was funded by a grant (ref GR/T22896) from the EPSRC (Engineering and Physical Sciences Research Council). The authors are grateful to Dr Andrew Cresswell, Richard Harkness, and Harvey Skinner for technical advice and support, and to Graham Tucker of Hanson, Reigate for allowing block sampling of the Reigate silver sand at Park Pit.


  1. 1.
    Abdelaziz, T.S., Martin, C.D., Chalaturnyk, R.J.: Characterization of locked sand from Northeastern Alberta. Geotech. Test. J. 31(6), 1–10 (2008)Google Scholar
  2. 2.
    Airey, D.W.: Triaxial testing of a naturally cemented carbonate soil. J. Geotech. Eng. 119(9), 1379–1398 (1993). doi: 10.1061/(ASCE)0733-9410(1993)119:9(1379) CrossRefGoogle Scholar
  3. 3.
    Alvarado, G., Lui, N., Coop, M.R.: Effect of fabric on the behaviour of reservoir sandstones. Can. Geotech. J. 49, 1036–1051 (2012). doi: 10.1139/T2012-060 CrossRefGoogle Scholar
  4. 4.
    Barton, M.E.: Cohesive sands: the natural transition from sands to sandstones. In: Anagnostopoulos, A., et al. (eds.) Geotechnical Engineering of Hard Soils—Soft Rocks, pp. 367–374. Balkema, Rotterdam (1993)Google Scholar
  5. 5.
    Besuelle, P., Desrues, J., Raynaud, S.: Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int. J. Rock Mech. Min. Sci. 37(8), 1223–1237 (2000)CrossRefGoogle Scholar
  6. 6.
    Bhandari, A.R., Powrie, W., Harkness, R.M.: A digital image-based deformation measurement system for triaxial tests. Geotech. Test. J. 35(2) (2012). doi: 10.1520/GTJ103821
  7. 7.
    Bhandari, A.R.: The mechanics of an unbonded locked sand at low effective stresses. Ph.D. thesis, University of Southampton (2009)Google Scholar
  8. 8.
    Bishop, A.W., Henkel, D.J.: The Measurement of Soil Properties in the Triaxial Test, 2nd edn. Edward Arnold, London (1962)Google Scholar
  9. 9.
    Bishop, A.W.: The influence of an undrained change in stress on the pore pressure in porous media of low compressibility. Géotechnique 23(3), 435–442 (1973)CrossRefGoogle Scholar
  10. 10.
    Black, D.K., Lee, K.L.: Saturating laboratory samples by back pressure. ASCE J. Soil Mech. Found. Div. 99(1), 75–93 (1973)Google Scholar
  11. 11.
    Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)CrossRefGoogle Scholar
  12. 12.
    Cecconi, M., Viggiani, G.M.B.: Structural features and mechanical behaviour of a pyroclastic weak rock. Int. J. Num. Anal. Meth. Geomech. 25, 1525–1557 (2001). doi: 10.1002/nag.185 CrossRefzbMATHGoogle Scholar
  13. 13.
    Cecconi, M., DeSimone, A., Tamagnini, C., Viggiani, G.M.B.: A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil. Int. J. Num. Anal. Meth. Geomech. 26, 1531–1560 (2002). doi: 10.1002/nag.257 CrossRefzbMATHGoogle Scholar
  14. 14.
    Clough, G.W., Rad, N.S., Bachus, R.C., Sitar, N.: Cemented sands under static loading. J. Geotech. Eng. Div. 107(6), 799–817 (1981)Google Scholar
  15. 15.
    Consoli, N.C., Cruz, R.C., Fonseca, A.V., Coop, M.R.: Influence of cement-voids ratio on stress-dilatancy behaviour of artificially cemented sand. J. Geotech. Geoenviron. Eng. 138(1), 100–109 (2012). doi: 10.1061/(ASCE)GT.1943-5606.0000565 CrossRefGoogle Scholar
  16. 16.
    Coop, M.R.: The mechanics of uncemented carbonate sands. Géotechnique 40(7), 607–626 (1990)CrossRefGoogle Scholar
  17. 17.
    Coop, M.R., Atkinson, J.H.: The mechanics of cemented carbonate sands. Géotechnique 43(1), 53–67 (1993)CrossRefGoogle Scholar
  18. 18.
    Coop, M.R., Wilson, S.M.: Behavior of hydrocarbon reservoir sands and sandstones. J. Geotech. Geoenviron. Eng. 129(11), 1010–1019 (2003). doi: 10.1061/(ASCE)1090-0241(2003)129:11(1010) CrossRefGoogle Scholar
  19. 19.
    Cotecchia, F., Chandler, R.J.: The influence of structure on the pre-failure behaviour of a natural clay. Geotechnique 47(3), 523–544 (1997)CrossRefGoogle Scholar
  20. 20.
    Cresswell, A.W.: Sampling and strength testing an unbonded locked sand. PhD thesis, University of Southampton (1999)Google Scholar
  21. 21.
    Cresswell, A.W., Barton, M.E., Brown, R.: Determining the maximum density of sands by pluviation. Geotech. Test. J. 22(4), 324–328 (1999)CrossRefGoogle Scholar
  22. 22.
    Cresswell, A.W.: Block sampling and test specimen preparation of locked sands. Géotechnique 51(6), 567–570 (2001)CrossRefGoogle Scholar
  23. 23.
    Cresswell, A.W., Barton, M.E.: Direct shear tests on an uncemented, and a very slightly cemented, locked sand. Q. J. Eng. Geol. Hydrogeol. 36, 119–132 (2001)CrossRefGoogle Scholar
  24. 24.
    Cresswell, A.W., Powrie, W.: Triaxial tests on an unbonded locked sand. Géotechnique 54(2), 107–115 (2004)CrossRefGoogle Scholar
  25. 25.
    Cuccovillo, T., Coop, M.R.: Yielding and pre-failure deformation of structured sands. Géotechnique 47(3), 491–508 (1997)CrossRefGoogle Scholar
  26. 26.
    Cuccovillo, T., Coop, M.R.: On the mechanics of structured sands. Géotechnique 49(6), 741–760 (1999)CrossRefGoogle Scholar
  27. 27.
    Dalla Rosa, F., Consoli, N.C., Baudet, B.A.: An experimental investigation of the behaviour of artificially cemented soil cured under stress. Géotechnique 58(8), 675–679 (1997). doi: 10.1680/geot.2008.58.8.675 CrossRefGoogle Scholar
  28. 28.
    Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Num. Anal. Meth. Geomech. 28, 279–321 (2004)CrossRefGoogle Scholar
  29. 29.
    Dusseault, M.B., Morgenstern, N.R.: Locked sands. Q. J. Eng. Geol. 12, 117–131 (1979)CrossRefGoogle Scholar
  30. 30.
    Finno, R.J., Harris, W.W., Mooney, M., Viggiani, G.: Shear bands in plane strain compression of loose sand. Géotechnique 47(1), 149–65 (1997)CrossRefGoogle Scholar
  31. 31.
    Fukushima, S., Tatsuoka, F.: Strength and deformation characteristics of saturated sand at extremely low pressures. Soils Found. 24(4), 30–48 (1984)CrossRefGoogle Scholar
  32. 32.
    Georgiannou, V.N., Burland, J.B.: A laboratory study of slip surface formation in an intact natural stiff clay. Géotechnique 56(8), 551–559 (2006)CrossRefGoogle Scholar
  33. 33.
    Guo, P.J., Su, X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44, 579–591 (2007). doi: 10.1139/T07-010 CrossRefGoogle Scholar
  34. 34.
    Kavvadas, M., Amorosi, A.: A constitutive model for structured soils. Géotechnique 50(3), 263–273 (2000) Google Scholar
  35. 35.
    Kodaka, T., Higo, Y., Kimoto, S., Oka, F.: Effects of sample shape on the strain localization of water-saturated clay. Int. J. Num. Anal. Meth. Geomech. 31, 483–521 (2000)CrossRefGoogle Scholar
  36. 36.
    Lade, P.V., Boer, R.D.: The concept of effective stress for soil, concrete and rock. Géotechnique 47(1), 61–78 (1997)Google Scholar
  37. 37.
    Leroueil, S., Vaughan, P.R.: General and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3), 467–488 (1990)CrossRefGoogle Scholar
  38. 38.
    Malandraki, V., Toll, D.: Drained probing triaxial tests on a weakly bonded artificial soil. Géotechnique 50(2), 141–151 (2000)CrossRefGoogle Scholar
  39. 39.
    Mooney, M.A., Finno, R.J., Viggiani, G.: A unique critical state for sand? J. Geotech. Geoenviron. Eng. 124(11), 1100–1108 (1998)CrossRefGoogle Scholar
  40. 40.
    Powrie, W., Ni, Q., Harkness, R.M., Zhang, X.: Numerical modelling of plane strain tests on sands using a particulate approach. Géotechnique 55(4), 297–306 (2005)CrossRefGoogle Scholar
  41. 41.
    Rechenmacher, A.L., Finno, R.J.: Digital image correlation to evaluate shear banding in dilative sands. Geotech. Test. J. 27(1), 13–22 (1998)Google Scholar
  42. 42.
    Roscoe, K.H., Schofield, A.N.: Mechanical behaviour of an idealised ‘wet’ clay. In: Proc. Eur. Conf. Soil Mech. Found. Engng, Wiesbaden 1, pp. 47–54 (1963)Google Scholar
  43. 43.
    Rowe, P.W.: The relevance of soil fabric to site investigation practice. Géotechnique 22(2), 195–300 (1972)CrossRefGoogle Scholar
  44. 44.
    Shuttle, D.A.: Can the effect of sand fabric on plastic hardening be determined using a self-bored pressuremeter? Can. Geotech. J. 43, 659–673 (1972). doi: 10.1139/T06-033 CrossRefGoogle Scholar
  45. 45.
    Ventouras, K., Coop, M.R.: On the behaviour of Thanet sand: an example of an uncemented natural sand. Géotechnique 59(9), 727–738 (2009). doi: 10.1680/geot.7.00061 CrossRefGoogle Scholar
  46. 46.
    Wong, R.C.K.: Mobilized strength components of Athabasca oil sand in triaxial compression. Can. Geotech. J. 36, 718–735 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations