Advertisement

Granular Matter

, Volume 15, Issue 5, pp 607–627 | Cite as

Discrete modelling results of a direct shear test for granular materials versus FE results

  • J. Kozicki
  • M. Niedostatkiewicz
  • J. TejchmanEmail author
  • H.-B. Muhlhaus
Original Paper

Abstract

The intention of this paper is to present a comparison of the results of discrete element and finite element simulations of a simple shear test for medium dense cohesionless sand. Such a comparison may provide useful information on the limitations and possible advantages of micro-polar continuum models for granular media as compared with discrete element models. To simulate the discrete nature of sand at the micro-level during shearing, the 3D discrete open-source model YADE developed at Grenoble University was used. Contact moments at spheres were assumed to capture the influence of force eccentricities due to grain roughness. Attention was paid to some micro-structural events (such as vortices, force chains, vortex structures, local void ratio fluctuations) appearing in a shear zone and kinetic, elastic and dissipated energies in granular specimen. The results of the discrete element simulations were compared with the corresponding finite element (FE) solutions based on a micro-polar hypoplastic constitutive model for granular material. A satisfactory agreement between discrete and FE results was achieved. Advantages and disadvantages of both approaches are outlined.

Keywords

Direct shear test Discrete element method Finite element method Micro-polar hypoplasticity Sand 

Notes

Acknowledgments

Research work by the first and third author has been carried out as a part of the Project: “Innovative resources and effective methods of safety improvement and durability of buildings and transport infrastructure in the sustainable development” financed by the European Union (POIG.01.01.02-10-106/09-01). The fourth author would like to acknowledge the support by the ARC grant DP0985662 “The influence of particle shape, fragmentation and compaction on 3D hopper flow”.

References

  1. 1.
    Schwedes, J.: Testers for measuring flow properties of particulate solids. Powder Handling and Processing 12, 337–385 (2000)Google Scholar
  2. 2.
    Skempton, A.W.: Aleksander Collin: a note on his pioneer work in soil mechanics. Geotechnique 1(4), 216–221 (1949)Google Scholar
  3. 3.
    Potyondy, J.G.: Skin friction between various soils and construction materials. Geotechnique 4, 339–353 (1961)CrossRefGoogle Scholar
  4. 4.
    Wernick, E.: Zusammenhänge zwischen der Mantelreibung von zylindrischen Ankern und Ergebnissen von direkten Scherversuchen. Bautechnik 8, 263–267 (1977)Google Scholar
  5. 5.
    Wernick, E.: Tragfähigkeit zylindrischer Anker in Sand unter besonderer Berücksichtigung des Dilatanzverhaltens. Publication Series of the Institute for Rock and Soil Mechanics, University Karlsruhe 75 (1978) (in german)Google Scholar
  6. 6.
    Desai, C.S., Drumm, E.C., Zaman, M.M.: Cyclic testing and modeling of interfaces. Journal of Geotechnical Engineering ASCE 111(6) (1985)Google Scholar
  7. 7.
    Jewell, R.A., Wroth, C.P.: Direct shear tests on reinforced sand. Geotechnique 37(1), 53–68 (1987)CrossRefGoogle Scholar
  8. 8.
    Tejchman, J., Wu, W.: Experimental and numerical study of sand-steel interfaces. International Journal of Numerical and Anal. Methods in Geomechanics 19(8), 513–537 (1995)CrossRefGoogle Scholar
  9. 9.
    Shibuya, S., Mitachi, T., Tamate, S.: Interpretation of direct shear box testing of sands as quasi-simple shear. Geotechnique 47, 769–790 (1997)CrossRefGoogle Scholar
  10. 10.
    Chandler, R.J., Hamilton, P.S.: On the measurement of the undrained strength of discontinuities in the direct shear box. Geotechnique 49(5), 615–620 (1999)CrossRefGoogle Scholar
  11. 11.
    Terzaghi, K., Peck, R.B.: Soil mechanics in engineering practice. Wiley, New York (1948)Google Scholar
  12. 12.
    Saada, A.S., Townsend, F.C.: State of the art: laboratory strength testing of soils. Laboratory shear strength of soil. A STM Special Technical Publishing 740, 7–77 (1981)Google Scholar
  13. 13.
    Scarpelli, G., Wood, D.M.: Experimental observations of shear band patterns in direct shear test, pp. 473–484. In: Proceedings of IUTAM Conference on Deformation and Failure of Granular Materials, Delft (1982)Google Scholar
  14. 14.
    Uesugi, M., Kishida, H.: Influential factors of friction between steel and dry sand. Soils and Foundations 26(2), 33–46 (1986)CrossRefGoogle Scholar
  15. 15.
    Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Computer Methods in Applied Mechanics and Engineering 197, 4429–4443 (2008)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Tejchman, J., Bauer, E.: FE-simulations of a direct and a true simple shear test within a polar hypoplasticity. Computers and Geotechnics 21(1), 1–16 (2005)CrossRefGoogle Scholar
  17. 17.
    Tejchman, J.: FE-analysis of shearing of granular bodies in a direct shear box. International Journal of Particulate Science and Technology 23(3), 229–248 (2005)CrossRefGoogle Scholar
  18. 18.
    Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE Journal of engineering mechanics 124(3), 285–292 (1998)CrossRefGoogle Scholar
  19. 19.
    Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chemical Engineering Technology 26(2), 1–4 (2003)CrossRefGoogle Scholar
  20. 20.
    Ord, A., Hobbs, B., Regenauer-Lieb, K.: Shear band emergence in granular materials—a numerical study. International Journal for Numerical and Analytical Methods in Geomechanics 31, 373–393 (2007)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Pena, A.A., Lizcano, A., Alonso-Marroquin, F., Herrmann, H.J.: Biaxial test simulations using a packing of polygonal particles. International Journal for Numerical and Analytical Methods in Geomechanics 32, 143–160 (2008)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, X., Papon, A., Mühlhaus, H.-B.: Numerical study of structural evolution in shear band. Philosophical Magazine. doi: 10.1080/14786435.2012.715249 (2012)
  23. 23.
    Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics 32, 340–357 (2005)CrossRefGoogle Scholar
  24. 24.
    Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behaviour of granular materials. Granular Matter 12(5), 527–541 (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ng, T.T.: Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. International Journal for Numerical and Analytical Methods in Geomechanics 33, 511–552 (2009)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Salot, Ch., Gotteland, P., Villard, P.: Influence of relative density on granular materials behaviour: DEM simulations of triaxial tests. Granular Metter 11(4), 221–236 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Matsushima, T., Chang, C.S.: Quantitative evolution of the effect of irregularly shaped particles in sheared granular assemblies. Granular Matter 13, 269–276 (2011)CrossRefGoogle Scholar
  28. 28.
    Liu, S.H.: Simulating a direct shear box test by DEM. Canadian Geotechnical Journal 43, 155–168 (2006)CrossRefGoogle Scholar
  29. 29.
    Yan, Y., Ji, S.: Discrete element modelling of direct shear test for a granular material. International Journal for Numerical and Analytical Methods in Geomechanics 34, 978–990 (2010)zbMATHGoogle Scholar
  30. 30.
    Kozicki, J., Donze, F.V.: Yade-open DEM: an open-source software using a discrete element method to simulate granular material. Engineering Computations 26(7), 786–805 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Cundall, P.A., Strack, O.D.L.: The distinct numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  32. 32.
    Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter 14(4), 457–468 (2012)CrossRefGoogle Scholar
  33. 33.
    Kozicki, J., Tejchman, J., Mróz, Z.: Modelling of sand grain roughness in quasi-static triaxial compression using two different discrete element approaches. Acta Geotechnica (2013) (under preparation)Google Scholar
  34. 34.
    Pasternak, E., Mühlhaus, H.-B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds) Computational Mechanics–New Frontiers for New Millennium, pp. 1189–1194. Elsevier Science, Amsterdam (2001)Google Scholar
  35. 35.
    Pasternak, E., Mühlhaus, H.-B.: Generalised homogenisation procedures for granular materials. Journal of Engineering Mathematics 52(1), 199–229 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A.: From particle ensembles to Cosserat continua: homogenisation of contact forces towards stresses and couple stresses. International Journal of Solids and Structures 40, 6681–6702 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Šmilauer, V., Chareyre, B.: Yade DEM Formulation. Manual (2011)Google Scholar
  38. 38.
    Belheine, N., Plassiard, J.P., Donze, F.V., Darve, F., Seridi, A.: Numerical simulations of drained triaxial test using 3D discrete element modeling. Computers and Geotechnics 36(1–2), 320–331 (2009)CrossRefGoogle Scholar
  39. 39.
    Hertz, H.: On the contact of elastic solids. J. Reine und Angewandte Mathematik 92, 156–171 (1882)zbMATHGoogle Scholar
  40. 40.
    Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. International Journal of Applied Mechanics Transaction ASME 75, 327–344 (1953)MathSciNetGoogle Scholar
  41. 41.
    Cundall, P.A., Hart, R.: Numerical modeling of discontinua. Journal of Engineering computations 9, 101–113 (1992)CrossRefGoogle Scholar
  42. 42.
    Kolymbas, D., Wu, W.: Recent results of triaxial tests with granular materials. Powder Technology 60(2), 99–119 (1990)CrossRefGoogle Scholar
  43. 43.
    Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe (1992)Google Scholar
  44. 44.
    Kast, K.: Geführtes Rahmenschergerät für direkte Scherversuche. Geotechnik 3, 109–110 (1985) (in german)Google Scholar
  45. 45.
    Chupin, O., Rechenmacher, A.L., Abedi, S.: Finite strain analysis of non-uniform deformations inside shear bands in sands. International Journal for Numerical and Analytical Methods in Geomechanics 36(14), 1651–1666 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Tordesillas, A., Walker, D. M., Qun Lin, Q.: Force cycles and force chains. Physical Review E 81(1):011302-1–011302-10 (2010)Google Scholar
  47. 47.
    Luding, S.: Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures 41, 5821–5836 (2004)CrossRefzbMATHGoogle Scholar
  48. 48.
    Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granular Matter 14(6), 695–705 (2012)CrossRefGoogle Scholar
  49. 49.
    Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotechnique Letters 2, 113–118 (2012)CrossRefGoogle Scholar
  50. 50.
    Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Physical Review E 74(031306), 1–10 (2006)Google Scholar
  51. 51.
    Kuhn, M.R.: Structured deformation in granular materials. Mechanics of Materials 31, 407–442 (1999)CrossRefGoogle Scholar
  52. 52.
    Kruyt, N.P., Rothenburg, L.: Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. Journal of Statistical Mechanics P07021, 1–10 (2006)Google Scholar
  53. 53.
    Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granular Matter 13, 503–510 (2011)CrossRefGoogle Scholar
  54. 54.
    Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja (eds.) Springer Series in Geomechanics and Geoengineering. Springer Verlag, Berlin-Heidelberg (2008)Google Scholar
  55. 55.
    Tejchman, J., Górski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. International Journal of Solids and Structures 45(6), 1546–1569 (2008)CrossRefzbMATHGoogle Scholar
  56. 56.
    Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with micro-polar hypoplasticity. International Journal of Non-Linear Mechanics 42, 882–894 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36(1), 13–26 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils and Foundations 36(1), 1–12 (1996)CrossRefGoogle Scholar
  59. 59.
    Wang, C.C.: A new representation theorem for isotropic functions. Journal of Archive for Rational Mechanics and Analysis 36, 166–223 (1970)Google Scholar
  60. 60.
    Tejchman, J., Wu, W.: FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant granular bodies within micro-polar hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics 33(1), 117–142 (2009) Google Scholar
  61. 61.
    Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials 4(5), 461–486 (1990)CrossRefGoogle Scholar
  62. 62.
    Tejchman, J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics 31(8), 595–611 (2004)CrossRefGoogle Scholar
  63. 63.
    Oda, M.: Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (ed.) Powders and Grains, pp. 161–167. Balkema, Rotterdam (1993)Google Scholar
  64. 64.
    Tejchman, J., Wu, W.: FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granular Matter 12(4), 399–410 (2010)CrossRefzbMATHGoogle Scholar
  65. 65.
    Mühlhaus, H.-B.: Application of Cosserat theory in numerical solutions of limit load problems. Ingenieur-Archiv 59, 124–137 (1989)CrossRefGoogle Scholar
  66. 66.
    Papon, A., Liu, X., Mühlhaus, H.-B., Gross, L.: Orientation of shear bands for a rigid plastic frictional material in simple shear. Philosophical Magazine. doi: 10.1080/14786435.2012.704417 (2012)
  67. 67.
    Tejchman, J., Gudehus, G.: Shearing of a narrow granular strip with polar quantities. Numerical and Analytical Methods in Geomechanics 25, 1–18 (2001)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Kozicki
    • 1
  • M. Niedostatkiewicz
    • 1
  • J. Tejchman
    • 1
    Email author
  • H.-B. Muhlhaus
    • 2
  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.The University of Queensland St LuciaBrisbaneAustralia

Personalised recommendations