Granular Matter

, Volume 15, Issue 3, pp 275–286 | Cite as

Non-contact stress measurement in granular materials via neutron and X-ray diffraction: theoretical foundations

Original Paper

Abstract

Model validation remains a serious problem within the field of computational granular materials research. In all cases the rigor of the validation process is entirely dependent on the quality and depth of the experimental data that forms the point of comparison. Neutron and X-ray diffraction methods offer the only quantitative non-contact method for determining the spatially resolved triaxial stress field within granular materials under load. Measurements such as this can provide an unprecedented level of detail that will be invaluable in validating many models. In this paper the theoretical foundation underpinning diffraction-based strain measurements, their conversion to local stress in the particles and ultimately into the bulk stress field is developed. Effects such as elastic anisotropy within the particles of the granular material, particle plasticity and locally inhomogeneous stress distribution are shown to not offer any obstacles to the method and a detailed treatment of the calculation of the bulk stresses from the particle stresses is given.

Keywords

Bulk stress Neutron and X-ray diffraction Strain scanning Stress measurement Granular mechanics Micromechanics 

Notes

Acknowledgments

This research is supported by the Australian Research Council Discovery Project Scheme (DP130104290). Access to the KOWARI diffractometer was made possible by the Bragg Institute and AINSE.

References

  1. 1.
    Friedrich, W., Knipping, P., Von Laue, M.: Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte Bayerische Akademie der Wissenschaften, 303 (1912)Google Scholar
  2. 2.
    Kisi, E.H., Howard, C.J.: Applications of Neutron Powder Diffraction. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  3. 3.
    Lester, H.H., Aborn, R.H.: The behaviour under stress of the iron crystals in steel. Army Ordnance 6, 120 (1925)Google Scholar
  4. 4.
    Noyan, I.C., Cohen, J.B.: Residual Stress–Measurement by Diffraction and Interpretation. Springer, New York (1987)Google Scholar
  5. 5.
    Paranjpe, S.K. (ed.): Measurement of Residual Stress in Materials using Neutrons: Proceedings of a Technical Meeting Held in Vienna, 13–17 October 2003. International Atomic Energy Agency (2005)Google Scholar
  6. 6.
    Fitzpatrick, M.E., Lodini, A. (eds.): Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. Taylor and Francis, London (2003)Google Scholar
  7. 7.
    Hauk, V.: Structural and Residual Stress Analysis by Non-Destructive Methods. Elsevier, Amsterdam (1997)Google Scholar
  8. 8.
    Hall, S.A., Wright, J., Pirling, T., Andò, E., Hughes, D.J., Viggiani, G.: Can intergranular force transmission be identified in sand? First results of spatially-resolved neutron and X-ray diffraction. Granul. Matter 13, 251 (2011)CrossRefGoogle Scholar
  9. 9.
    Wensrich, C.M., Kisi, E.H., Zhang, J.F., Kirstein, O.: Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granul. Matter (2012). doi:10.1007/s10035-012-0366-8
  10. 10.
    Bruel, A., Kirstein, O.: Residual stress diffractometer KOWARI at the Australian research reactor OPAL: status of the project. Phys. B Condens. Matter 385–386, 1040 (2006)CrossRefGoogle Scholar
  11. 11.
    Nye, J.F.: Physical Properties of Crystals. Oxford Press, Oxford (1957)Google Scholar
  12. 12.
    Voigt, W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Ann. Phys. 274, 573–587 (1889) Google Scholar
  13. 13.
    Reuss, A.: Berechnung der Flie\(\beta \)grenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 9, 49–58 (1929)MATHCrossRefGoogle Scholar
  14. 14.
    Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335 (1962)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Eshelby, J.D.: Elastic inclusion and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 2. North-Holland, Amsterdam (1961)Google Scholar
  16. 16.
    Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25, 137 (1977)ADSMATHCrossRefGoogle Scholar
  17. 17.
    Berryman, J.G.: Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids 53, 2141 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Paranjpe, SK.: Summary. In: Paranjpe, S.K. (Ed.) Measurement of Residual Stress in Materials using Neutrons: Proceedings of a Technical Meeting Held in Vienna, 13–17 October 2003, International Atomic Energy Agency, p. 1 (2005)Google Scholar
  19. 19.
    Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165 (1996)CrossRefGoogle Scholar
  20. 20.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)MATHGoogle Scholar
  21. 21.
    Weber, J.: Recherches concernant les contraintes intergranulaires dans les milieux pulverulents. Bulletin de Liaison Phisique et Chimie 20, 1–3 (1966)Google Scholar
  22. 22.
    Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behaviour. J. Appl. Mech. 48, 339 (1981)ADSMATHCrossRefGoogle Scholar
  23. 23.
    Mehrabadi, M.M., Nemat-Nasser, S., Odo, M.: On statistical description of stress and fabric in granular materials. Int. J. Numer. Anal. Methods Geomech. 6, 95 (1982)MATHCrossRefGoogle Scholar
  24. 24.
    Satake, M.: Fundamental quantities in the graph approach to granular materials. In: Jenkins, J., Satake, M. (eds.) Mechanics of Granular Materials: New Models and Constitutive Relations, pp. 9–19. Elsevier, Amsterdam (1983)Google Scholar
  25. 25.
    Edwards, S.F., Grinev, D.V.: Statistical mechanics of stress transmission in disordered granular arrays. Phys. Rev. Lett. 82, 5397 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Bardet, J.P., Vardoulakis, I.: The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353 (2001)MATHCrossRefGoogle Scholar
  27. 27.
    Bagi, K.: Discussion on The asymmetry of stress in granular media by JP Bardet and I Vardoulakis [Int. J. Solids Struct. 38, 353–376 (2001)]”. Int. J. Solids Struct. 40, 1329 (2003)Google Scholar
  28. 28.
    Alonso-Marroquin, F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter 13, 189 (2011)CrossRefGoogle Scholar
  29. 29.
    Fortin, J., Millet, O., de Saxce, G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A/Solids 22, 567 (2003)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Goddard, J.D.: From granular matter to generalised continuum. In: Capriz, G., Giovine, P., Mariano, P. (eds.) Mathematical Models of Granular Matter: Lecture Notes in Mathematics. Springer, Berlin (2007)Google Scholar
  31. 31.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12, 239 (2010)CrossRefGoogle Scholar
  32. 32.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14, 289 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of EngineeringUniversity of NewcastleCallaghanAustralia
  2. 2.Bragg InstituteAustralian Nuclear Science and Technology OrganisationKirrawee DCAustralia

Personalised recommendations