# Non-contact stress measurement in granular materials via neutron and X-ray diffraction: theoretical foundations

- 266 Downloads
- 4 Citations

## Abstract

Model validation remains a serious problem within the field of computational granular materials research. In all cases the rigor of the validation process is entirely dependent on the quality and depth of the experimental data that forms the point of comparison. Neutron and X-ray diffraction methods offer the only quantitative non-contact method for determining the spatially resolved triaxial stress field within granular materials under load. Measurements such as this can provide an unprecedented level of detail that will be invaluable in validating many models. In this paper the theoretical foundation underpinning diffraction-based strain measurements, their conversion to local stress in the particles and ultimately into the bulk stress field is developed. Effects such as elastic anisotropy within the particles of the granular material, particle plasticity and locally inhomogeneous stress distribution are shown to not offer any obstacles to the method and a detailed treatment of the calculation of the bulk stresses from the particle stresses is given.

### Keywords

Bulk stress Neutron and X-ray diffraction Strain scanning Stress measurement Granular mechanics Micromechanics## Notes

### Acknowledgments

This research is supported by the Australian Research Council Discovery Project Scheme (DP130104290). Access to the KOWARI diffractometer was made possible by the Bragg Institute and AINSE.

### References

- 1.Friedrich, W., Knipping, P., Von Laue, M.: Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte Bayerische Akademie der Wissenschaften, 303 (1912)Google Scholar
- 2.Kisi, E.H., Howard, C.J.: Applications of Neutron Powder Diffraction. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
- 3.Lester, H.H., Aborn, R.H.: The behaviour under stress of the iron crystals in steel. Army Ordnance
**6**, 120 (1925)Google Scholar - 4.Noyan, I.C., Cohen, J.B.: Residual Stress–Measurement by Diffraction and Interpretation. Springer, New York (1987)Google Scholar
- 5.Paranjpe, S.K. (ed.): Measurement of Residual Stress in Materials using Neutrons: Proceedings of a Technical Meeting Held in Vienna, 13–17 October 2003. International Atomic Energy Agency (2005)Google Scholar
- 6.Fitzpatrick, M.E., Lodini, A. (eds.): Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. Taylor and Francis, London (2003)Google Scholar
- 7.Hauk, V.: Structural and Residual Stress Analysis by Non-Destructive Methods. Elsevier, Amsterdam (1997)Google Scholar
- 8.Hall, S.A., Wright, J., Pirling, T., Andò, E., Hughes, D.J., Viggiani, G.: Can intergranular force transmission be identified in sand? First results of spatially-resolved neutron and X-ray diffraction. Granul. Matter
**13**, 251 (2011)CrossRefGoogle Scholar - 9.Wensrich, C.M., Kisi, E.H., Zhang, J.F., Kirstein, O.: Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granul. Matter (2012). doi:10.1007/s10035-012-0366-8
- 10.Bruel, A., Kirstein, O.: Residual stress diffractometer KOWARI at the Australian research reactor OPAL: status of the project. Phys. B Condens. Matter
**385–386**, 1040 (2006)CrossRefGoogle Scholar - 11.Nye, J.F.: Physical Properties of Crystals. Oxford Press, Oxford (1957)Google Scholar
- 12.Voigt, W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Ann. Phys.
**274**, 573–587 (1889) Google Scholar - 13.Reuss, A.: Berechnung der Flie\(\beta \)grenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik
**9**, 49–58 (1929)MATHCrossRefGoogle Scholar - 14.Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids
**10**, 335 (1962)MathSciNetADSCrossRefGoogle Scholar - 15.Eshelby, J.D.: Elastic inclusion and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 2. North-Holland, Amsterdam (1961)Google Scholar
- 16.Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids
**25**, 137 (1977)ADSMATHCrossRefGoogle Scholar - 17.Berryman, J.G.: Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids
**53**, 2141 (2005)MathSciNetADSMATHCrossRefGoogle Scholar - 18.Paranjpe, SK.: Summary. In: Paranjpe, S.K. (Ed.) Measurement of Residual Stress in Materials using Neutrons: Proceedings of a Technical Meeting Held in Vienna, 13–17 October 2003, International Atomic Energy Agency, p. 1 (2005)Google Scholar
- 19.Bagi, K.: Stress and strain in granular assemblies. Mech. Mater.
**22**, 165 (1996)CrossRefGoogle Scholar - 20.Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)MATHGoogle Scholar
- 21.Weber, J.: Recherches concernant les contraintes intergranulaires dans les milieux pulverulents. Bulletin de Liaison Phisique et Chimie
**20**, 1–3 (1966)Google Scholar - 22.Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behaviour. J. Appl. Mech.
**48**, 339 (1981)ADSMATHCrossRefGoogle Scholar - 23.Mehrabadi, M.M., Nemat-Nasser, S., Odo, M.: On statistical description of stress and fabric in granular materials. Int. J. Numer. Anal. Methods Geomech.
**6**, 95 (1982)MATHCrossRefGoogle Scholar - 24.Satake, M.: Fundamental quantities in the graph approach to granular materials. In: Jenkins, J., Satake, M. (eds.) Mechanics of Granular Materials: New Models and Constitutive Relations, pp. 9–19. Elsevier, Amsterdam (1983)Google Scholar
- 25.Edwards, S.F., Grinev, D.V.: Statistical mechanics of stress transmission in disordered granular arrays. Phys. Rev. Lett.
**82**, 5397 (1999)ADSCrossRefGoogle Scholar - 26.Bardet, J.P., Vardoulakis, I.: The asymmetry of stress in granular media. Int. J. Solids Struct.
**38**, 353 (2001)MATHCrossRefGoogle Scholar - 27.Bagi, K.: Discussion on The asymmetry of stress in granular media by JP Bardet and I Vardoulakis [Int. J. Solids Struct. 38, 353–376 (2001)]”. Int. J. Solids Struct.
**40**, 1329 (2003)Google Scholar - 28.Alonso-Marroquin, F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter
**13**, 189 (2011)CrossRefGoogle Scholar - 29.Fortin, J., Millet, O., de Saxce, G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A/Solids
**22**, 567 (2003)MathSciNetMATHCrossRefGoogle Scholar - 30.Goddard, J.D.: From granular matter to generalised continuum. In: Capriz, G., Giovine, P., Mariano, P. (eds.) Mathematical Models of Granular Matter: Lecture Notes in Mathematics. Springer, Berlin (2007)Google Scholar
- 31.Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter
**12**, 239 (2010)CrossRefGoogle Scholar - 32.Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granul. Matter
**14**, 289 (2012)Google Scholar