Granular Matter

, Volume 15, Issue 3, pp 377–387 | Cite as

Pattern formation in a horizontally shaken granular submonolayer

  • Dominik Krengel
  • Severin Strobl
  • Achim Sack
  • Michael Heckel
  • Thorsten Pöschel
Original Paper


We study the mechanism leading to the formation of stripe-like patterns in a rectangular container filled with a sub-monolayer of frictional spherical particles when it is subjected to horizontal oscillations. By means of Molecular Dynamics simulations we could reproduce the experimental results. Systematic simulations allow to identify friction to be responsible for the pattern formation, that is, the tangential interaction between contacting particles and between the particles and the floor of the container. When particles are in contact with the floor and other adjacent particles simultaneously, there emerges a frustrated situation in which the particles are prevented from rolling on the floor. This effect leads to local jamming and eventually to stripe-like pattern formation. In the long time evolution, the stripes are unstable. Stripes may merge as well as disintegrate.


Pattern formation Horizontal shaking Frustration effects 



The authors gratefully acknowledge the support of the Cluster of Excellence ‘Engineering of Advanced Materials’ at the University of Erlangen-Nuremberg, which is funded by the German Research Foundation (DFG) within the framework of its ‘Excellence Initiative’.


  1. 1.
    Cooke, M.H., Stephens, D.J., Bridgwater, J.: Powder mixing—a literature survey. Powder Technol. 15, 1–20 (1976)CrossRefGoogle Scholar
  2. 2.
    Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Pöschel, T.: Dynamik Granularer Systeme. Logos, Berlin (2001)Google Scholar
  4. 4.
    Ristow, G.: Pattern Formation in Granular Materials, volume of 164 of Springer Tracts in Modern Physics, Springer (1999)Google Scholar
  5. 5.
    Aranson, I.S., Tsimring, L.S.: Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Aranson, I.S., Tsimring, L.S.: Granular Patterns. Oxford University Press, Oxford (2009)Google Scholar
  7. 7.
    Allen, J.R.: Asymmetrical ripple marks and the origin of cross-stratification. Nature 194, 167–169 (1962)ADSCrossRefGoogle Scholar
  8. 8.
    Anderson, R.S., Bunas, K.L.: Grain size segregation and stratigraphy in aeolian ripples modelled with a cellular automaton. Nature 365, 740–743 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Koeppe, J., Enz, M., Kakalios, J.: Avalanche segregation of granular media. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains’97, pp. 443–446. Rotterdam, Balkema (1997)Google Scholar
  10. 10.
    Julien, P.Y., Lan, Y.Q., Raslan, Y.: Experimental mechanics of sand stratification. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains’97, pp. 487–490. Rotterdam, Balkema (1997)Google Scholar
  11. 11.
    Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Novel pattern formation in granular matter. In: Schimansky-Geier, L., Pöschel, T. (eds.) Stochastic Dynamics. Lecture Notes in Physics, pp. 319–333. Springer, Berlin (1997)Google Scholar
  12. 12.
    Makse, H.A.: Stratification instability in granular flows. Phys. Rev. E 56, 7008–7016 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Makse, H.A., Havlin, S., Ivanov, PCh., King, P.R., Prakash, S., Stanley, H.E.: Pattern formation in sedimentary rocks: connectivity, permeability, and spatial correlations. Phys. A 233, 587–605 (1996)CrossRefGoogle Scholar
  15. 15.
    Makse, H.A., Cizeau, P., Stanley, H.E.: Possible stratification mechanism in granular mixtures. Phys. Rev. Lett. 78, 3298–3301 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Makse, H.A., Cizeau, P., Stanley, H.E.: Modeling stratification in two-dimensional sandpiles. Phys. A 249, 391–396 (1998)CrossRefGoogle Scholar
  17. 17.
    Makse, H.A., Herrmann, H.-J.: Microscopic model for granular stratification and segregation. Europhys. Lett. 43, 1–6 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Gray, J.M.N.T., Hutter, K.: Pattern formation in granular avalanches. Cont. Mech. Thermodyn. 9, 341–345 (1997)CrossRefGoogle Scholar
  19. 19.
    Gray, J.M.N.T., Hutter, K.: Physik granularer Lawinen. Physikalische Blätter 54, 37–43 (1998)CrossRefGoogle Scholar
  20. 20.
    Grasselli, Y., Herrmann, H.-J.: Experimental study of granular stratification. Granul. Matter 1, 43–47 (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Boutreux, T., De Gennes, P.G.: Surface flow of granular mixtures. In: Behringer, R. P., Jenkins, J. T. (eds.) Powders and Grains’97, pp. 439–442. Rotterdam, Balkema (1997)Google Scholar
  22. 22.
    Boutreux, T., De Gennes, P.G.: Surface flows if granular mixtures: I. General principles and minimal model. J. Physique I 6, 1295–1304 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Meakin, P.: A simple two-dimensional model for particle segregation. Phys. A 163, 733–746 (1990)CrossRefGoogle Scholar
  24. 24.
    Sorby, H.C.: On the structures produced by the currents present during the deposition of stratified rocks. Geologist 2, 137–147 (1859)Google Scholar
  25. 25.
    Head, D.A., Rodgers, G.J.: Slowly driven formation with granular mixtures. Phys. Rev. E 56, 1976–1980 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Werner, B.T., Hallet, B.: Numerical simulation of selforganized stone stripes. Nature 361, 142–145 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Washburn, A.L.: Classification of patterned ground and review of suggested origins. Geol. Soc. Am. Bull. 67, 823–866 (1956)ADSCrossRefGoogle Scholar
  28. 28.
    Olafsen, J.S., Urbach, J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Prevost, A., Melby, P., Egolf, D.A., Urbach, J.S.: Nonequilibrium two-phase coexistence in a confined granular layer. Phys. Rev. E 70, 050301(R) (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Melby, P., Vega Reyes, F., Prevost, A., Robertson, R., Kumar, P., Egolf, D.A., Urbach, J.S.: The dynamics of thin vibrated granular layers. J. Phys.: Condens. Matter 17, S2689–S2704 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Sapozhnikov, M.V., Aranson, I.S., Olafsen, J.S.: Coarsening of granular clusters: two types of scaling behaviors. Phys. Rev. E 67, 010302(R) (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Losert, W., Cooper, D.G.W., Gollub, J.P.: Propagating front in an excited granular layer. Phys. Rev. E 59, 5855–5861 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Olafsen, J.S., Urbach, J.S.: Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60, R2468–R2471 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Nie, X., Ben-Naim, E., Chen, S.Y.: Dynamics of vibrated granular monolayers. Europhys. Lett. 51, 679–684 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Cafiero, R., Luding, S., Herrmann, H.-J.: Two-dimensional granular gas of inelastic spheres with multiplicative driving. Phys. Rev. Lett. 84, 6014–6017 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Rivas, N., Cordero, P., Risso, D., Soto, R.: Segregation in quasi-two-dimensional granular systems. New J. Phys. 13, 055018 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Rivas, N., Ponce, S., Gallet, B., Risso, D., Soto, R., Cordero, P., Mujica, N.: Sudden chain energy transfer events in vibrated granular media. Phys. Rev. Lett. 106, 088001 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Aranson, I.S., Blair, D., Kalatsky, V.A., Crabtree, G.W., Kwok, W.-K., Vinokur, V.M., Welp, U.: Electrostatically driven granular media: phase transitions and coarsening. Phys. Rev. Lett. 84, 3306–3309 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Mullin, T.: Coarsening of self-organized clusters in binary mixtures of particles. Phys. Rev. Lett. 84, 4741–4744 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Mullin, T.: Mixing and de-mixing. Science 295, 1851 (2002)CrossRefGoogle Scholar
  41. 41.
    Reis, P.M., Ehrhardt, G., Stephenson, A., Mullin, T.: Gases, liquids and crystals in granular segregation. Europhys. Lett. 66, 357–363 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Reis, P.M., Sykes, T., Mullin, T.: Phases of granular segregation in a binary mixture. Phys. Rev. E 74, 051306 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Reis, P., Mullin, T.: Granular segregation as a critical phenomenon. Phys. Rev. Lett. 89, 244301 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Pica Ciamarra, M., Coniglio, A., Nicodemi, M.: Dynamically induced effective interaction in periodically driven granular mixtures. Phys. Rev. Lett. 97, 038001 (Jul 2006)Google Scholar
  45. 45.
    Pica Ciamarra, M., Coniglio, A., Nicodemi, M.: Phenomenology and theory of horizontally oscillated granular mixtures. Eur. Phys. J. E. 22, 227–234 (2007)CrossRefGoogle Scholar
  46. 46.
    Strassburger, G., Betat, A., Scherer, M.A., Rehberg, I.: Pattern formation by horizontal vibration of granular material. In: Wolf, D.E., Schreckenberg, M., Bachem, A. (eds.) Workshop on Traffic and Granular Flow, pp. 329–334. World Scientific, October 9–11 (1995)Google Scholar
  47. 47.
    Betat, A., Dury, C., Rehberg, I., Ristow, G., Scherer, M., Schröter, M., Straßburger, G.: Formation of patterns in granular materials. In: Busse, F.H., Müller, S.C. (eds.) Evolution of Spontaneous Structures in Dissipative Continuous Systems, pp. 495–545. Springer, Berlin (1998)CrossRefGoogle Scholar
  48. 48.
    Scherer, M.A., Buchholtz, V., Pöschel, T., Rehberg, I.: Swirling granular matter: from rotation to reptation. Phys. Rev. E 54, R4560–R4563 (Nov 1996)Google Scholar
  49. 49.
    Scherer, M.A., Kötter, K., Markus, M., Goles, E., Rehberg, I.: Swirling granular solidlike clusters. Phys. Rev. E 61, 4069–4077 (Apr 2000)Google Scholar
  50. 50.
    Aumaître, S., Kruelle, C.A., Rehberg, I.: Segregation in granular matter under horizontal swirling excitation. Phys. Rev. E 64, 041305 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Schnautz, T., Brito, R., Kruelle, C.A., Rehberg, I.: A horizontal brazil-nut effect and its reverse. Phys. Rev. Lett. 95, 028001 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    Kudrolli, A., Wolpert, M., Gollub, J.P.: Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)ADSCrossRefGoogle Scholar
  54. 54.
    Brilliantov, N.V., Salueña, C., Schwager, T., Pöschel, T.: Transient structures in granular gases. Phys. Rev. Lett. 93, 134301 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Orza, J.A.C., Brito, R., van Noije, T.P.C., Ernst, M.H.: Patterns and long range correlations in idealized granular flows. J. Mod. Phys. C 8, 953–967 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    Efrati, E., Livne, E., Meerson, B.: Hydrodynamic singularities and clustering in a freely cooling inelastic gas. Phys. Rev. Lett 94, 088001 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Kondic, L., Hartley, R.R., Tennakoon, S.G.K., Painter, B., Behringer, R.P.: Segregation by friction. Europhys. Lett. 61, 742–748 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Kondic, L.: Friction based segregation of 2d granular assembly. MRS Proc. 543, 357–362 (1998)CrossRefGoogle Scholar
  59. 59.
    Painter, B., Behringer, R.P.: Dynamics of two-particle granular collisions on a surface. Phys. Rev. E 62, 2380–2387 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    Dutt, M., Behringer, R.P.: Effects of surface friction on a two-dimensional granular system: cooling bound system. Phys. Rev. E 70, 061304 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Radjai, F., Roux, S.: Friction-induced self-organization of a one-dimensional array of particles. Phys. Rev. E 51, 6177–6187 (Jun 1995)Google Scholar
  62. 62.
    Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: A model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996) Google Scholar
  63. 63.
    Haff, P.K., Werner, B.T.: Computer simulation of the mechanical sorting of grains. Powder Technol. 48, 239–245 (1986)CrossRefGoogle Scholar
  64. 64.
    Brilliantov, N.V., Pöschel, T.: Rolling friction of a viscous sphere on a hard plane. Europhys. Lett. 42, 511–516 (1998)Google Scholar
  65. 65.
    Pöschel, T., Brilliantov, N.V.: Rolling as a continuing collision. Eur. Phys. J. B. 12, 299–301 (1999)ADSCrossRefGoogle Scholar
  66. 66.
    Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)ADSzbMATHCrossRefGoogle Scholar
  67. 67.
    Meerson, B., Dez-Minguito, M., Schwager, T., Pöschel, T.: Close-packed granular clusters: hydrostatics and persistent Gaussian fluctuations. Granual. Matter 10, 21–27 (2007)zbMATHCrossRefGoogle Scholar
  68. 68.
    Meerson, B., Pöschel, T., Sasorov, P.V., Schwager, T.: Giant fluctuations at a granular phase separation threshold. Phys. Rev. E 69, 021302 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    Clerc, M.G., Cordero, P., Dunstan, J., Huff, K., Mujica, N., Risso, D., Varas, G.: Liquidsolid-like transition in quasi-one-dimensional driven granular media. Nat. Phys. 4, 249–254 (2008)CrossRefGoogle Scholar
  70. 70.
    Kondic, L.: Dynamics of spherical particles on a surface: collision-induced sliding and other effects. Phys. Rev. E 60, 751–770 (Jul 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dominik Krengel
    • 1
  • Severin Strobl
    • 1
  • Achim Sack
    • 1
  • Michael Heckel
    • 1
  • Thorsten Pöschel
    • 1
  1. 1.Institute for Multiscale SimulationUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations