Granular Matter

, Volume 15, Issue 2, pp 221–235 | Cite as

Micromechanical analysis of second order work in granular media

  • Nejib HaddaEmail author
  • François Nicot
  • Franck Bourrier
  • Luc Sibille
  • Farhang Radjai
  • Félix Darve
Original Paper


This paper examines instabilities in granular materials from a microscopic point of view through numerical simulations conducted using a discrete element method on two three-dimensional specimens. The detection and the tracking of grain scale deformation mechanisms constitute the key point for a better understanding the failure process and puzzling out what lies behind the vanishing of the macroscopic second order work. For this purpose, the second order work from microscopic variables, involving contact force and branch vector, was introduced and tracked numerically. Then, all contacts depicting negative values of the second order work were deeply investigated, especially their spatial distribution (homogeneity, agglomeration, dispersion\(\ldots \)) within the specimen according to the density of the granular assembly and to the loading direction. A set of comparisons has been considered in this context in order to highlight how a specimen is populated with such contacts whether it is loaded along a direction included within the plastic tensorial zone or along a direction for which the specimen is likely to behave elastically (elastic tensorial zone). Moreover, these comparisons concerned also loading directions within the cone of instability so that links between the vanishing of both microscopic and macroscopic second order works can be established and the local mechanisms responsible for failure occurrence may be figured out.


Microscopic variables Grain scale Second order work Granular material Discrete element method Homogeneity Spatial distribution Instability 


  1. 1.
    Antony, S., Momoh, R., Kuhn, M.: Micromechanical modelling of oval particulates subjected to bi-axial compression. Comput. Mater. Sci. 29(4), 494–498 (2004)CrossRefGoogle Scholar
  2. 2.
    Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43(10), 3166–3184 (2006)Google Scholar
  3. 3.
    Cundall, P.-A., Strack, O.-D.-L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  4. 4.
    Diggle, P.J.: Statistical Analysis of Spatial Point Patterns, p. 148. Academic press, London (1983)Google Scholar
  5. 5.
    Gardiner, B., Tordesillas, A.: Micromechanics of shear bands. Int. J. Solids Struct. 41(21), 5885–5901 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Golshani, A., Okui, Y., Oda, M., Takemura, T.: A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech. Mater. 38(4), 287–303 (2006)CrossRefGoogle Scholar
  7. 7.
    Gudehus, G.: A comparison of some constitutive laws under radially symmetric loading and unloading. In: Wittke, I.W. (ed.) 3rd International Conference on Numerical Methods in Geomechanics, pp. 1309–1323. A.A. Balkema, Aachen (1979)Google Scholar
  8. 8.
    Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1–3), 192–205 (2000)CrossRefGoogle Scholar
  10. 10.
    Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 408–429 (1999)CrossRefGoogle Scholar
  11. 11.
    Kuhn, M.R.: Micro-mechanics of fabric and failure in granular materials. Mech. Mater. 42(9), 827–840 (2010)CrossRefGoogle Scholar
  12. 12.
    Kuhn, M.R., Bagi, K.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41(21), 5793–5820 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kuhn, M.R., Bagi, K.: On the relative motions of two rigid bodies at a compliant contact: application to granular media. Mech. Res. Commun. 32(4), 463–480 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kuhn, M.R., Chang, C.S.: Stability, bifurcation, and softening in discrete systems: a conceptual approach for granular materials. Int. J. Solids Struct. 43(20), 6026–6051 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lafond, V., Cordonnier, T., De Coligny, F., Courbaud, B.: Reconstructing harvesting diameter distribution from aggregate data. Ann. For. Sci. 69(2), 235–243 (2012)CrossRefGoogle Scholar
  16. 16.
    Laouafa, F., Darve, F.: Modelling of slope failure by a material instability mechanism. Computer. Geotech. 29(4), 301–325 (2002)CrossRefGoogle Scholar
  17. 17.
    Luding, S.: Micro-macro transition for anisotropic, frictional granular packings. Int. J. Solids Struct. 41, 5821–5836 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Nicot, F., Darve, F., Koah, H.-D.-V.: Bifurcation and second-order work in geomaterials. Int. J. Num. Anal. Methods Geomech. 31, 1007–1032 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F.: Failure mechanisms in granular media: a discrete element analysis. Granul. Matter 13(3), 255–260 (2011)CrossRefGoogle Scholar
  20. 20.
    Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Wan, R., Darve, F.: Inertia effects as a possible missing link between micro and macro second-order work in granular media. Int. J. Solids Struct. 49(10), 1252–1258 (2012a)CrossRefGoogle Scholar
  21. 21.
    Nicot, F., Sibille, L., Darve, F.: Bifurcation in granular materials: an attempt at a unified framework. Int. J. Solids Struct. 46, 3938–3947 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Nicot, F., Sibille, L., Darve, F.: Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int. J. Plast. 29, 136–154 (2012b)Google Scholar
  23. 23.
    Nicot, F., Darve, F.: Diffuse and localized failure modes: two competing mechanisms. Int. J. Numer. Anal. Meth. Geomech. 35(5), 586–601 (2011)CrossRefGoogle Scholar
  24. 24.
    Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713–1740 (2000)CrossRefGoogle Scholar
  25. 25.
    Oda, M., Junichi, K., Siavouche, N.-N.: Experimental micromechanical evaluation of strength of granular materials effects of particle rolling. Mech. Mater. 1, 269–283 (1982)CrossRefGoogle Scholar
  26. 26.
    Oda, M., Takemura, T., Takahashi, M.: Microstructure of shear band developed in Toyoura sand by means of microfocus X-ray computed tomography. Géotechnique 54, 539–542 (2004)CrossRefGoogle Scholar
  27. 27.
    Pearson, K.: On the criterion that a given system of deviation from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5(50), 157–175 (1900)CrossRefGoogle Scholar
  28. 28.
    Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. CHAOS 9(3), 544 (1999)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    Sibille, L., Donzé, F.V., Nicot, F., Darve, F.: Analysis of failure occurrence from direct simulations. Eur. J. Environ. Civ. Eng. 13(2), 187–202 (2009)CrossRefGoogle Scholar
  31. 31.
    Sibille, L., Donzé, F.-V., Nicot, F., Chareyre, B., Darve, F.: Bifurcation detection and catastrophic failure. Acta Geotecnica 3, 14–24 (2008)Google Scholar
  32. 32.
    Steele, M., Chaseling, J.: Powers of discrete goodness-of-fit test statistics for a uniform null against a selection of alternative distributions. Commun. Stat. Simul. Comput. 35(4), 1067–1075 (2006) Google Scholar
  33. 33.
    Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 87(32), 4987–5016 (2007)Google Scholar
  34. 34.
    Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)Google Scholar
  35. 35.
    Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2), 265–296 (2011). ElsevierADSCrossRefGoogle Scholar
  36. 36.
    Tordesillas, A., O’Sullivan, P., Walker, D.M.: Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles. Comptes Rendus Mécanique 338(10–11), 556–569 (2010). Elsevier Masson SASADSCrossRefGoogle Scholar
  37. 37.
    Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47(5), 624–639 (2010)zbMATHCrossRefGoogle Scholar
  39. 39.
    Welker, P., McNamara, S.: Precursors to failure and weakening in a biaxial test. Granul. Matter 13, 93–105 (2011)CrossRefGoogle Scholar
  40. 40.
    Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., et al.: Yade Documentation, The Yade Project. (2010) Retrieved from

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nejib Hadda
    • 1
    Email author
  • François Nicot
    • 1
  • Franck Bourrier
    • 1
  • Luc Sibille
    • 2
  • Farhang Radjai
    • 3
  • Félix Darve
    • 4
  1. 1.IrsteaGrenobleFrance
  2. 2.Institut de Recherche en Génie Civil et Mécanique CNRS, LUNAM UniversitéNantesFrance
  3. 3.Laboratoire de Mécanique et de Génie CivilUniversité de MontpellierMontpellierFrance
  4. 4.Laboratoire Sols Solides Structures RisquesUJF-INPG-CNRSGrenobleFrance

Personalised recommendations