Granular Matter

, Volume 15, Issue 4, pp 447–454 | Cite as

Liquid migration in sheared unsaturated granular media

  • Roman ManiEmail author
  • Dirk Kadau
  • Hans J. Herrmann
Original Paper


We show how liquid migrates in sheared unsaturated granular media using a grain scale model for capillary bridges. Liquid is redistributed to neighboring contacts after rupture of individual capillary bridges leading to redistribution of liquid on large scales. The liquid profile evolution coincides with a recently developed continuum description for liquid migration in shear bands. The velocity profiles which are linked to the migration of liquid as well as the density profiles of wet and dry granular media are studied.


Wet granular matter Contact dynamics simulations Liquid bridge Cohesion Liquid migration 



We thank Martin Brinkmann for helpful discussions and the Deutsche Forschungsgemeinschaft (DFG) for financial support through grant no. HE 2732/11-1.


  1. 1.
    Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Scheel, M., Seemann, R., Brinkmann, M., Di Michiel, M., Sheppard, A., Breidenbach, B., Herminghaus, S.: Morphological clues to wet granular pile stability. Nat. Mater. 7, 189–193 (2008)Google Scholar
  4. 4.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)CrossRefGoogle Scholar
  5. 5.
    Mitarai, N., Nakanishi, H.: Simple model for wet granular materials with liquid clusters. EPL (Europhys. Lett.) 88(6), 64001 (2009)Google Scholar
  6. 6.
    Scholtès, L., Hicher, P.Y., Nicot, F., Chareyre, B., Darve, F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33(10), 1289–1313 (2009)CrossRefGoogle Scholar
  7. 7.
    Richefeu, V., El Youssoufi, M.S., Radjaï, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006)Google Scholar
  8. 8.
    Aharonov, E., Sparks, D.: Shear profiles and localization in simulations of granular materials. Phys. Rev. E 65, 051302 (2002)CrossRefADSGoogle Scholar
  9. 9.
    da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A Solid 13, 93–114 (1994) Google Scholar
  11. 11.
    Jean, M., Moreau, J.J: Unilaterality and dry friction in the dynamics of rigid body collections. In: Contact Mechanics International Symposium, pp. 31–48. (1992)Google Scholar
  12. 12.
    Kadau, D., Bartels, G., Brendel, L., Wolf, D.E.: Pore stabilization in cohesive granular systems. Phase Transit. 76, 315–331 (2003)CrossRefGoogle Scholar
  13. 13.
    Kadau, D., Herrmann, H.J.: Collapsing granular suspensions. Eur. Phys. J. E 30, 275–281 (2009)CrossRefGoogle Scholar
  14. 14.
    Kadau, D., Herrmann, H.J.: Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition. Phys. Rev. E 83(3), 031301 (2011)Google Scholar
  15. 15.
    Halsey, T.C., Levine, A.J.: How sandcastles fall. Phys. Rev. Lett. 80(14), 3141–3144 (1997)CrossRefADSGoogle Scholar
  16. 16.
    Ulrich, S., Aspelmeier, T., Zippelius, A., Roeller, K., Fingerle, A., Herminghaus, S.: Dilute wet granular particles: nonequilibrium dynamics and structure formation. Phys. Rev. E 80, 031306 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Shi, D., McCarthy, J.: Numerical simulation of liquid transfer between particles. Powder Technol. 184(1), 64–75 (2008). doi: 10.1016/j.powtec.2007.08.011 Google Scholar
  18. 18.
    Rognon, P.G., Roux, J.-N., Wolf, D., Naaïm, M., Chevoir, F.: Rheophysics of cohesive granular materials. Europhys. Lett. 74(4), 644 (2006)Google Scholar
  19. 19.
    GDR MiDi: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)Google Scholar
  20. 20.
    Utter, B., Behringer, R.P.: Self-diffusion in dense granular shear flows. Phys. Rev. E 69, 031308 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Campbell, C.S.: Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85–101 (1997)MathSciNetzbMATHCrossRefADSGoogle Scholar
  22. 22.
    Jackson, K.A.: Kinetic Processes. Wiley-VCH, London (2010)Google Scholar
  23. 23.
    Mani, R., Kadau, D., Or, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. (preprint, accepted) arXiv:1205. 0999v1 (2012)Google Scholar
  24. 24.
    Unger, T.: Collective rheology in quasi static shear flow of granular media (preprint). arXiv:1009.3878v1 (2010)Google Scholar
  25. 25.
    Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 5(15), 1921 (1972)Google Scholar
  26. 26.
    Turton, R.: Challenges in the modeling and prediction of coating of pharmaceutical dosage forms. Powder Technol. 181(2), 186–194 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Building MaterialsETH ZürichZurichSwitzerland
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations