Granular Matter

, Volume 14, Issue 5, pp 639–649 | Cite as

The influence of particle orientation on the loading condition of pebbles in fluvial gravel

  • Christoph Tuitz
  • Ulrike Exner
  • Alexander Preh
  • Bernhard Grasemann
Original Paper

Abstract

The loading conditions of pebbles in fluvial gravel deposits were studied with different degrees of preferred particle orientation. Sediments that are comprised of non-spherical particles often show a preferred particle orientation, due to dynamic sedimentation. Here, the impact of this effect on the loading conditions of the particles and its implication on particle breakage was investigated by using discrete element simulations in three dimensions. The numerical models are based on the size and shape distribution of pebbles from a natural gravel sample. In addition, the particle size in some of the models was chosen to be uniform, to study the influence of the particle size distribution on the loading condition. Fluvial pebbles, whose shapes can be at best approximated by ellipsoids, were efficiently simulated in the discrete element models by the use of clumps. The results show that a preferred orientation of approximate ellipsoidal sedimentary particles has only a minor effect on the number and the position of particle contacts but leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles, in comparison to an assembly of arbitrarily oriented particles. The comparison of the different particle size models indicates that the influence of the particle size distribution on the loading condition is relatively low. The results have significant implications for the breakage rate of non-spherical particles in sediments under load.

Keywords

Discrete element method Particle breakage Grain shape Load partitioning Particle size distribution Particle orientation Imbrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arslan H., Baykal G., Sture S.: Analysis of the influence of crushing on the behavior of granular materials under shear. Granul. Matter 11(2), 87–97 (2009). doi:10.1007/s10035-009-0127-5 CrossRefGoogle Scholar
  2. 2.
    Cheng Y.P., Nakata Y., Bolton M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)CrossRefGoogle Scholar
  3. 3.
    Couroyer C., Ning Z., Ghadiri M.: Distinct element analysis of bulk crushing: Effect of particle properties and loading rate. Powder Technol. 109(1–3), 241–254 (2000)CrossRefGoogle Scholar
  4. 4.
    Marketos G., Bolton M.D.: Compaction bands simulated in discrete element models. J. Struct. Geol. 31(5), 479–490 (2009). doi:10.1016/j.jsg.2009.03.002 ADSCrossRefGoogle Scholar
  5. 5.
    Wang B.S., Chen Y., Wong T.F.: A discrete element model for the development of compaction localization in granular rock. J. Geophys. Res. Solid Earth 113(B03202), 1–17 (2008). doi:10.1029/2006jb004501 Google Scholar
  6. 6.
    Tang C.A., Liu H.Y., Zhu W.C., Yang T.H., Li W.H., Song L., Lin P.: Numerical approach to particle breakage under different loading conditions. Powder Technol. 143–144, 130–143 (2004). doi:10.1016/j.powtec.2004.04.026 CrossRefGoogle Scholar
  7. 7.
    Tsoungui O., Vallet D., Charmet J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105(1–3), 190–198 (1999)CrossRefGoogle Scholar
  8. 8.
    Gallagher J.J., Friedman M., Handin J., Sowers G.M.: Experimental studies relating to microfracture in sandstone. Tectonophysics 21(3), 203–247 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    Antony S.J., Kuhn M.R.: Influence of particle shape on granular contact signatures and shear strength: new insights from simulations. Int. J. Solids Struct. 41(21), 5863–5870 (2004). doi:10.1016/j.ijsolstr.2004.05.067 MATHCrossRefGoogle Scholar
  10. 10.
    Maeda K., Sakai H., Kondo A., Yamaguchi T., Fukuma M., Nukudani E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12(5), 499–505 (2010). doi:10.1007/s10035-010-0208-5 CrossRefGoogle Scholar
  11. 11.
    Matsushima T., Chang C.S.: Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter 13(3), 269–276 (2011). doi:10.1007/s10035-011-0263-6 CrossRefGoogle Scholar
  12. 12.
    Nouguier-Lehon C., Cambou B., Vincens E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Met. 27(14), 1207–1226 (2003). doi:10.1002/Nag.314 MATHCrossRefGoogle Scholar
  13. 13.
    Massari F.: Upper-flow-regime stratification types on steep-face, coarse-grained, Gilbert-type progradational wedges (Pleistocene, southern Italy). J. Sediment. Res. 66(2), 364–375 (1996)Google Scholar
  14. 14.
    Sohn Y.K., Kim S.B., Hwang I.G., Bahk J.J., Choe M.Y., Chough S.K.: Characteristics and depositional processes of large-scale gravelly Gilbert-type foresets in the Miocene Doumsan fan delta, Pohang Basin, SE Korea. J. Sediment Res. 67(1), 130–141 (1997). doi:10.1306/d4268513-2b26-11d7-8648000102c1865d Google Scholar
  15. 15.
    Exner U., Grasemann B.: Deformation bands in gravels: displacement gradients and heterogeneous strain. J. Geol. Soc. Lond. 167(5), 905–913 (2010). doi:10.1144/0016-76492009-076 CrossRefGoogle Scholar
  16. 16.
    Spahic D., Exner U., Behm M., Grasemann B., Haring A., Pretsch H.: Listric versus planar normal fault geometry: an example from the Eisenstadt-Sopron Basin (E Austria). Int. J. Earth Sci. 100(7), 1685–1695 (2011). doi:10.1007/s00531-010-0583-5 CrossRefGoogle Scholar
  17. 17.
    Cundall P.A., Strack O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  18. 18.
    McDowell G.R., Ferellec J.F.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). doi:10.1007/s10035-010-0205-8 CrossRefGoogle Scholar
  19. 19.
    Potyondy D.O., Cundall P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)CrossRefGoogle Scholar
  20. 20.
    Hazzard J.F., Young R.P., Maxwell S.C.: Micromechanical modeling of cracking and failure in brittle rocks. J. Geophys. Res. Solid Earth 105(B7), 16683–16697 (2000)CrossRefGoogle Scholar
  21. 21.
    Ferellec J.F., McDowell G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). doi:10.1007/s10035-010-0205-8 CrossRefGoogle Scholar
  22. 22.
    Tuitz C., Exner U., Frehner M., Grasemann B.: The impact of ellipsoidal particle shape on pebble breakage in gravel. Int. J. Rock Mech. Min. Sci. 54, 70–79 (2012). doi:10.1016/j.ijrmms.2012.05.018 CrossRefGoogle Scholar
  23. 23.
    Klette, R., Rosenfeld, A.: Digital Geometry, pp. 287–290. Elsevier, Amsterdam (2004)Google Scholar
  24. 24.
    Tee, G.J.: Surface area of ellipsoid segment. University of Auckland, Department of Mathematics. http://www.math.auckland.ac.nz/Research/Reports/Series/539.pdf (2005) Accessed 9 January 2012
  25. 25.
    Lu M., McDowell G.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69–80 (2007). doi:10.1007/s10035-006-0021-3 CrossRefGoogle Scholar
  26. 26.
    Radjai F., Wolf D.E., Jean M., Moreau J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005). doi:10.1103/Physreve.72.041307 ADSCrossRefGoogle Scholar
  28. 28.
    Beard D.C., Weyl P.K.: Influence of texture on porosity and permeability of unconsolidated sand. Am. Assoc. Petr. Geol. B 57(2), 349–369 (1973)Google Scholar
  29. 29.
    Kondolf G.M., Adhikari A.: Weibull vs. lognormal distributions for fluvial gravels. J. Sediment. Res. 70(3), 456–460 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christoph Tuitz
    • 1
  • Ulrike Exner
    • 1
    • 2
  • Alexander Preh
    • 3
  • Bernhard Grasemann
    • 1
  1. 1.Department for Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  2. 2.Natural History MuseumViennaAustria
  3. 3.Institute for Engineering GeologyVienna University of TechnologyViennaAustria

Personalised recommendations