Advertisement

Granular Matter

, Volume 14, Issue 6, pp 661–670 | Cite as

The collapse of a cylindrical cavity in a granular medium

  • Simon J. de Vet
  • John R. de Bruyn
Original Paper

Abstract

A cylindrical cavity in a noncohesive granular medium will collapse under gravity, leaving a circular crater in the surface of the material. We study this process through experiment and numerical modeling. Experimentally, we determine the shape and dimensions of craters formed by the collapse of a cylindrical cavity in a bed of small glass beads. Using a depth-averaged continuum model with cylindrical symmetry, we calculate the shape of the free surface both during and after the collapse. We use the model to study the energetics of the collapse process and investigate the dependence of the final crater on the initial shape of the cavity and the initial velocity field. While the shapes of the final craters are not identical in model and experiment, we find good qualitative agreement in aspect ratio and slope.

Keywords

Granular flows Granular collapse Granular craters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lajeunesse E., Monnier J.N., Homsy G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Balmforth N.J., Kerswell R.R.: Granular collapse in two dimensions. J. Fluid. Mech. 538, 399–428 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Siavoshi S., Kudrolli A.: Failure of a granular step. Phys. Rev. E. 71, 051302 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Lube G., Huppert H.E., Sparks R.S.J., Freundt A.: Static and flowing regions in granular collapses down channels. Phys. Fluids 19, 043301 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Hungr O.: Simplified models of spreading flow of dry granular material. Can. Geotech. J. 45, 1156–1168 (2008)CrossRefGoogle Scholar
  6. 6.
    Lacaze L., Phillips J.C., Kerswell R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    de Vet S.J., Johannes B., Hill K.M., de Bruyn J.R.: Collapse of a rectangular well in a quasi-two-dimensional granular bed. Phys. Rev. E 82, 041304 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Nagel S.R.: Instabilities in a sandpile. Rev. Mod. Phys. 64, 321 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542–548 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    GDR-MiDi: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)CrossRefGoogle Scholar
  12. 12.
    Pouliquen O., Cassar C., Jop P., Forterre Y., Nicolas M.: Flows of dense granular material: towards simple constitutive laws. J. Stat. Mech. 2006, P07020 (2006)CrossRefGoogle Scholar
  13. 13.
    Jop P., Forterre Y., Pouliquen O.: A consitutive law for dense granular flows. Nature 441, 727–730 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Forterre Y., Pouliquen O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Kerswell, R.R.: Dam break with coulomb friction: a model for granular slumping? Phys. Fluids 17, 057101 (2005)Google Scholar
  16. 16.
    Lube G., Huppert H.E., Sparks R.S.J., Freundt A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Staron L., Hinch E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Thompson E.L., Huppert H.E.: Granular column collapses: further experimental results. J. Fluid Mech. 575, 177–186 (2007)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Zenit R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031703 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Lajeunesse E., Mangeney-Castelnau A., Vilotte J.P.: Phys. Fluids 16, 2371 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Lube G., Huppert H.E., Sparks R.S.J., Hallworth M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175–199 (2004)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Lacaze L., Kerswell R.R.: Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102, 108305 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Boutreux, T., de Gennes, P.G.: Étalement d’une marche de sable: le problème du Sinaï. C.R. Acad. Sci. Paris 325, 85–89 (1997)ADSzbMATHGoogle Scholar
  24. 24.
    Mangeney-Castelnau A., Bouchut F., Vilotte J.P., Lajeunesse E., Aubertin A., Pirulli M.: On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Crosta G.B., Imposimato S., Roddeman D.: Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Uehara J.S., Ambroso M.A., Ojha R.P., Durian D.J.: Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90(19), 194301 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Walsh A.M., Holloway K.E., Habdas P., de Bruyn J.R.: Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91(10), 104301 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Newhall K.A., Durian D.J.: Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68, 060301 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    de Bruyn J.R., Walsh A.M.: Penetration of spheres into loose granular media. Can. J. Phys 82, 439 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Zheng Z.J., Wang Z.T., Qiu Z.G.: Impact craters in loose granular media. Eur. Phys. J. E 13, 321–324 (2004)CrossRefGoogle Scholar
  32. 32.
    Lohse D., Bergman R., Mikkelsen R., Zeilstra C., van der Meer D., Versluis M., van der Weel K., van der Hoef M., Kuipers H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93(19), 198003 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Ambroso M.A., Santore C.R., Abate A.R., Durian D.J.: Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Katsuragi H., Durian D.: Unified force law for granular impact cratering. Nat. Phys. 3(10), 420 (2007)CrossRefGoogle Scholar
  35. 35.
    de Vet S.J., de Bruyn J.R.: Shape of impact craters in granular media. Phys. Rev. E 76, 041306 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Deboeuf S., Gondret P., Rabaud M.: Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79, 041306 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Melosh H.J.: Impact Cratering: A Geologic Process. Oxford University Press, New York (1989)Google Scholar
  38. 38.
    Melosh H.J., Ivanov B.A.: Impact crater collapse. Annu. Rev. Earth Planet. Sci. 27, 385 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    Ballotini Impact Beads, Potters Industries, IncGoogle Scholar
  40. 40.
    Thoroddsen S.T., Shen A.Q.: Granular jets. Phys. Fluids 13, 4 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Bouchaud J.P., Cates M., Ravi Prakash J., Edwards S.: Hysteresis and Metastability in a Continuum Sandpile Model. Phys. Rev. Lett. 74(II), 1982 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    Wada K., Senshu H., Matsui T.: Numerical simulation of impact cratering on granular material. Icarus 180, 528–545 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  2. 2.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations