Granular Matter

, Volume 14, Issue 5, pp 563–576 | Cite as

Dynamical arching in a two dimensional granular flow

Original Paper

Abstract

A study of grains flow in a two dimensional hopper using particle tracking and photoelastic methods is presented in this article. An intermittent network of contact forces consisting of force chains and arches is observed. This network is responsible for fluctuations in the average vertical velocity. The magnitude of these fluctuations depends on the hopper’s geometry, and it quickly reduces for large aperture size and small inclination angles. The average velocity field is described using a combination of harmonic angular functions and a power law of radial position. The mass flow rate is determined through the average velocity field and a Beverloo type scaling is obtained. We found that the effect of the inclination angle on the mass flow rate is given by \({\alpha/ \,(\sin\alpha)^{3/2}}\) . It is also found that the critical aperture size, approaching jamming, depends linearly on \({\sin\alpha}\) . At small D/d, the time average of the network of contact forces shows a boundary with characteristics resembling the free fall arch. We show that an arch can be built following the principal compression orientation of the stress tensor which captures the characteristics of the arches observed experimentally.

Keywords

Granular flows Arching Jamming Photoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaeger H.M., Nagel S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    Umbanhowar P.B., Melo F., Swinney H.L.: Localized excitations in a vertical vibrated granular layer. Nature 382, 793–796 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Aranson I.S., Tsimring L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Ehrichs E.E., Jaeger H.M., Karczmar G.S., Knight J.B., Kuperman V.Y., Nagel S.R.: Granular convection observed observed by magnetic resonance imaging. Science 267, 1632–1634 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Adrian D.: Dynamical equilibrium of avalanches on a rough plane. Phys. Fluids 13, 2115–2124 (2001)CrossRefGoogle Scholar
  6. 6.
    Howell D., Behringer R.P., Veje C.: Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241–5244 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)CrossRefGoogle Scholar
  9. 9.
    Choi J., Kudrolli A., Bazant M.: Velocity profile of granular flows inside silos and hoppers. J. Phys. Condens. Matter 17, S2533–S2548 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Bagnold R.A.: Experiment on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49–63 (1954)ADSCrossRefGoogle Scholar
  11. 11.
    Jenike A.W.: Gravity Flow of Bulk Solids. University of Utah Press, Salt Lake City (1961)Google Scholar
  12. 12.
    Jenike A.W.: Storage and Flow of Solids. University of Utah Press, Lake City (1964)Google Scholar
  13. 13.
    Behringer R.P.: The dynamics of flowing sand. Nonlinear Sci. Today 3, 1–15 (1993)CrossRefGoogle Scholar
  14. 14.
    Nedderman R.M.: Static and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  15. 15.
    Drescher A., Waters A.J., Rhoades C.A.: Arching in hoppers: I. Arching theories and critical outlet size. Powder Technol. 84, 165–176 (1995)CrossRefGoogle Scholar
  16. 16.
    Drescher A., Waters A.J., Rhoades C.A.: Arching in hoppers: II. Arching theories and critical outlet size. Powder Technol. 84, 177–183 (1995)CrossRefGoogle Scholar
  17. 17.
    Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Majmudar T.S., Sperl M., Luding S., Behringer R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Zandman, F., Redner, S., Dally, J.W.: Photoelastic Coatings, SESA Monograph No 3. Science Press (1977)Google Scholar
  20. 20.
    Sharpe, W. (ed.): Springer Handbook of Experimental Solid Mechanics, pp. 701–742. Spinger Science+Business Media, LLC New York (2008)Google Scholar
  21. 21.
    Gåsvik K.: Optical Metrology. 3rd edn. Wiley, West Sussex (2002)CrossRefGoogle Scholar
  22. 22.
    Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming Transition in Granular Systems. EPAPS Document No. E-PRLTAO-98-020705 at http://www.aip.org/pubservs/epaps.html
  23. 23.
    Longhi E., Nalini E., Menon N.: Large force fluctuations in a flowing granular medium. Phys. Rev. Lett. 89, 045501 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    To K., Lai P.-Y., Pak H.K.: Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Edwards S.F., Mounfield C.C.: A theoretical model for the stress distribution in a granular matter. I. Basic equation. Phys. A 226, 1–11 (1996)MathSciNetGoogle Scholar
  26. 26.
    Edwards F.S., Mounfield C.C.: A theoretical model for the stress distribution in a granular matter. III. Forces in sandpiles. Phys. A 226, 25–33 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mounfield C.C., Edwards F.S.: A theoretical model for the stress distribution in a granular matter. II. Forces in pipes. Phys. A 226, 12–24 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Brown R.L., Richards J.C.: Profile of flow of granules through apertures. Trans. Inst. Chem. Eng. 38, 243–256 (1960)Google Scholar
  29. 29.
    Rose H.F., Tanaka T.: Rate of discharge of granular materials from bins and hoppers. Eng. (London) 208, 465 (1959)Google Scholar
  30. 30.
    Nedderman R.M., Tüzün U., Savage S.B., Houlsby G.T.: The flow of granular material I: discharge rates from hoppers. J. Chem. Eng. Sci. 37, 1597–1609 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Francisco Vivanco
    • 1
  • Sergio Rica
    • 2
  • Francisco Melo
    • 1
  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezPeñalolén, SantiagoChile

Personalised recommendations