Granular Matter

, Volume 14, Issue 5, pp 577–587 | Cite as

Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle

  • P. Caccamo
  • B. Chanut
  • T. Faug
  • H. Bellot
  • F. Naaim-Bouvet
Original Paper

Abstract

Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements.

Keywords

Granular Avalanche Obstacle Force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbolini, M., Domaas, U., Faug, T., Gauer, P., Hákonardóttir, K.M., Harbitz, C.B., Issler, D., Jóhannesson, T., Lied, K., Naaim, M., Naaim-Bouvet, F., Rammer, L.: The design of avalanche protection dams. Recent practical and theoretical developments. Directorate-General for Research and Innovation, European Commission (2009)Google Scholar
  2. 2.
    Bartelt P., McArdell B.W.: Instruments and methods: granulometric investigation of snow avalanches. J. Glaciol. 55, 829–833 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Rognon P., Chevoir F., Bellot H., Ousset F., Naaim M., Coussot P.: Rheology of dense snow flows: inferences from steady state chute-flow experiments. J. Rheol. 52(3), 729–748 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Sovilla B., McElwaine J., Schaer M., Vallet J.: Variation of deposition depth with slope angle in snow avalanches: measurements from vallée de la sionne. J. Geophys. Res. 115(F02016), 1–13 (2010)Google Scholar
  5. 5.
    GDRMiDi: On dense granular flows. Eur. Phys. J. E 1, 341–365 (2004)CrossRefGoogle Scholar
  6. 6.
    Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Dent J.D., Burrel K.J., Schmidt D.S., Louge M.Y., Adams E.E., Jazbutis T.G.: Density, velocity and friction measurement in a dry snow avalanche. Ann. Glaciol. 26, 247–252 (1998)ADSGoogle Scholar
  8. 8.
    Rognon P., Roux J.N., Naaim M., Chevoir F.: Dense flows of bidisperse assemblies of disks down an inclined plane. Phys. Fluids 19(058101), 1–4 (2007)Google Scholar
  9. 9.
    Ridgway K., Rupp R.: Flow of granular materials down chutes. Chem. Proc. Eng. 51, 82 (1970)Google Scholar
  10. 10.
    Savage S.B., Jeffrey D.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96 (1979)ADSMATHCrossRefGoogle Scholar
  11. 11.
    Wieghardt K.: Experiments on granular flows. Ann. Rev. Fluid Mech. 7, 89–114 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Campbell C.S., Brennen C.: Chute flows of granular material: Some computer simulations. Trans. ASME 52, 172–178 (1985)CrossRefGoogle Scholar
  13. 13.
    Johnson P., Nott P., Jackson R.: Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    Patton J., Brennen C., Sabersky R.: Shear flows of rapidly flowing granular materials. J. Appl. Mech. 54, 801–805 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Forterre Y., Pouliquen O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40, 1–24 (2008)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Hogg A.J.: Two-dimensional granular slumps down slopes. Phys. Fluids 19(093301), 1–19 (2007)Google Scholar
  17. 17.
    Chiou M.C., Wang Y., Hutter K.: Influence of obstacles on rapid granular flows. Acta Mechanica 175, 105–122 (2005)MATHCrossRefGoogle Scholar
  18. 18.
    Faug T., Gauer P., Lied K., Naaim M.: Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113(F03009), 1–17 (2008)Google Scholar
  19. 19.
    Gray J.M.N.T., Tai Y.C., Noelle S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Hákonardóttir K.M., Hogg A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17(077101), 1–10 (2005)Google Scholar
  21. 21.
    Pudasaini S.P., Hutter K., Hsiau S.S., Tai S.C., Wang Y., Katzenbach R.: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys. Fluids 19(5), 053302 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Pudasaini S.P., Kroener C.: Shock-waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys. Rev. E 78(041308), 1–12 (2008)Google Scholar
  23. 23.
    Teufelsbauer H., Wang Y., Chiou M.C., Wu W.: Flow-obstacle interaction in rapid granular avalanches: Dem simulation and comparison with experiment. Granul. Matter 11(4), 209–220 (2009)CrossRefGoogle Scholar
  24. 24.
    Buchholtz V., Pöschel T.: Interaction of a granular stream with an obstacle. Granul. Matter 1, 33–41 (1998)MATHCrossRefGoogle Scholar
  25. 25.
    Chanut B., Faug T., Naaim M.: Time-varying force from dense granular avalanches on a wall. Phys. Rev. E 82(041302), 1–12 (2010)Google Scholar
  26. 26.
    Faug T., Beguin R., Chanut B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80(021305), 1–13 (2009)Google Scholar
  27. 27.
    Moriguchi S., Borja R., Yashima A., Sawada K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1), 57–71 (2009)CrossRefGoogle Scholar
  28. 28.
    Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Schaefer M., Bugnion L., Kern M., Bartelt P.: Position dependent velocity profiles in granular avalanches. Granul. Matter 12(3), 327–336 (2010)CrossRefGoogle Scholar
  30. 30.
    Börzsönyi T., Ecke E., McElwaine J.N.: Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. L 103(178302), 1–4 (2009)Google Scholar
  31. 31.
    Louge M., Keast S.: On dense granular flows down flat frictional inclines. Phys. Fluids 13, 1213–1233 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Caccamo, P., Faug, T., Bellot, H., Naaim-Bouvet, F.: Experiments on a dry granular avalanche impacting an obstacle: dead zone, granular jump and induced forces. In: WIT Transactions on The Built Environment, vol. 15, pp. 53–62 (2011)Google Scholar
  33. 33.
    Gray J.M.N.T., Hutter K.: Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341–345 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Hákonardóttir, K.M.: The Interaction Between Snow Avalanches and Dams. Ph.D. thesis, University of Bristol (2004)Google Scholar
  35. 35.
    Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Tomasson G.G.: A laboratory study of the retarding effect of braking mounds. J. Glaciol. 49, 191–200 (2003)CrossRefGoogle Scholar
  36. 36.
    Naaim M., Faug T., Naaim-Bouvet F., Eckert N.: Return period calculation and passive structure design at the taconnaz avalanche path, france. Ann. Glaciol. 51(54), 89–97 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Gray, J.M.N.T.: Particle size segregation in granular avalanches: a brief review of recent progress. In: AIP, IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows (2010)Google Scholar
  38. 38.
    Marks B., Einav I.: A cellular automaton for segregation during granular avalanches. Granul. Matter 13(3), 211–214 (2011)CrossRefGoogle Scholar
  39. 39.
    Savage S.B., Lun C.K.K.: Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311–335 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Caccamo
    • 1
  • B. Chanut
    • 1
  • T. Faug
    • 1
  • H. Bellot
    • 1
  • F. Naaim-Bouvet
    • 1
  1. 1.Irstea, UR ETGRSaint Martin d’HèresFrance

Personalised recommendations