Advertisement

Granular Matter

, Volume 14, Issue 3, pp 363–380 | Cite as

An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code

  • Stephen R. SchwartzEmail author
  • Derek C. Richardson
  • Patrick Michel
Original Paper

Abstract

We present our implementation of the soft-sphere discrete element method (SSDEM) in the parallel gravitational N-body code pkdgrav, a well-tested simulation package that has been used to provide many successful results in the field of planetary science. The implementation of SSDEM allows for the modeling of the different contact forces between particles in granular material, such as various kinds of friction, including rolling and twisting friction, and the normal and tangential deformation of colliding particles. Such modeling is particularly important in regimes for which collisions cannot be treated as instantaneous or as occurring at a single point of contact on the particles’ surfaces, as is done in the hard-sphere discrete element method already implemented in the code. We check the validity of our soft-sphere model by reproducing successfully the dynamics of flows in a cylindrical hopper. Other tests will be performed in the future for different dynamical contexts, including the presence of external and self-gravity, as our code also includes interparticle gravitational force computations. This will then allow us to apply our tool with confidence to planetary science studies, such as those aimed at understanding the dynamics of regolith on solid celestial body surfaces, or at designing efficient sampling tools for sample-return space missions.

Keywords

Bulk solids Solar system DEM Hopper SSDEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM1 (MPG 136,306 kb)

ESM2 (MPG 140,280 kb)

References

  1. 1.
    Yano H. et al.: Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science 312, 1350–1353 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P.: The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Richardson D.C., Walsh K.J., Murdoch N., Michel P.: Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427–437 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Mehta A.J.: Granular Physics. Cambridge University Press, New York (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cleary P.W., Sawley M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89–111 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kacianauskas R., Maknickas A., Kaceniauskas A., Markauskas D., Balevicius R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41, 52–63 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Elaskar S.A., Godoy L.A., Gray D.D., Stiles J.M.: A viscoplastic approach to model the flow of granular solids. Int. J. Solids Struct. 37, 2185–2214 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Holsapple K.A.: Equilibrium figures of spinning bodies with self-gravity. Icarus 172, 272–303 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Holsapple K.A., Michel P.: Tidal disruptions. II. A continuum theory for solid bodies with strength, with applications to the solar system. Icarus 193, 283–301 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Sharma I., Jenkins J.T., Burns J.A.: Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus 200, 304–322 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Wada K., Senshu H., Matsui T.: Numerical simulation of impact cratering on granular material. Icarus 180, 528–545 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Hong D.C., McLennan J.A.: Molecular dynamics simulations of hard sphere granular particles. Phys. A 187, 159–171 (1992)CrossRefGoogle Scholar
  13. 13.
    Huilin L., Yunhua Z., Ding J., Gidaspow D., Wei L.: Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds. Chem. Eng. Sci. 62, 301–317 (2007)CrossRefGoogle Scholar
  14. 14.
    Kosinski P., Hoffmann A.C.: Extension of the hard-sphere particle-wall collision model to account for particle deposition. Phys. Rev. E 79, 061302 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)CrossRefGoogle Scholar
  16. 16.
    Sànchez P., Scheeres D.J.: Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. ApJ 727, 120 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular physics in low-gravity environments using DEM. MNRAS 420, 3368–3380 (2012)Google Scholar
  18. 18.
    Gallas J.A.C., Hermann H.J., Pöschel T., Sokolowski S.: Molecular dynamics simulation of size segregation in three dimensions. J. Stat. Phys. 82, 443–450 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Silbert L.E., Ertaş D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Stadel J.: Cosmological N-body simulations and their analysis, pp. 126. University of Washington, Washington, DC (2001)Google Scholar
  21. 21.
    Richardson D.C., Quinn T., Stadel J., Lake G.: Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143, 45–59 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Richardson D.C., Michel P., Walsh K.J., Flynn K.W.: Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet. Space Sci. 57, 183–192 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  24. 24.
    Saha P., Tremaine S.: Symplectic integrators for solar system dynamics. Astron. J. 104, 1633–1640 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Quinn T., Perrine R.P., Richardson D.C., Barnes R.: A Symplectic integrator for Hill’s equations. ApJ 139, 803–807 (2010)ADSGoogle Scholar
  26. 26.
    Cleary P.W.: Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Min. Eng. 11, 1061–1080 (1998)CrossRefGoogle Scholar
  27. 27.
    Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)CrossRefGoogle Scholar
  28. 28.
    Kahn K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A 352, 522–524 (2005)CrossRefGoogle Scholar
  29. 29.
    Zhu H.P., Yu A.B.: A theoretical analysis of the force models in discrete element method. Powder Technol. 161, 122–129 (2006)CrossRefGoogle Scholar
  30. 30.
    Nedderman R.M., Tüzün U., Savage S.B., Houlsby G.T.: The flow of granular materials–I: discharge rates from Hoppers. Chem. Eng. Sci. 37, 1597–1609 (1982)CrossRefGoogle Scholar
  31. 31.
    Bertrand F., Leclaire L.-A., Levecque G.: DEM-based models for the mixing of granular materials. Chem. Eng. Sci. 60, 2517–2531 (2005)CrossRefGoogle Scholar
  32. 32.
    Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)CrossRefGoogle Scholar
  33. 33.
    Janssen H.A.: Versuche über Getreidedruck in Silozellen. Ver. dt. Ing. 39, 1045–1049 (1895)Google Scholar
  34. 34.
    Shaxby J.H., Evans J.C.: The variation of pressure with depth in columns of powders. Trans. Faraday Soc. 19, 60–72 (1923)CrossRefGoogle Scholar
  35. 35.
    Rose H.E., Tanaka T.: Rate of discharge of granular materials from bins and hoppers. Engineer 208, 465–469 (1959)Google Scholar
  36. 36.
    Hofmeister, P., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. In: Nakagawa M., Luding S. (eds.) Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media, Hrsg. AIP Conference Proceedings vol. 1145, pp. 71–74 (2009)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stephen R. Schwartz
    • 1
    • 2
    Email author
  • Derek C. Richardson
    • 1
  • Patrick Michel
    • 2
  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA
  2. 2.Lagrange LaboratoryUniversity of Nice Sophia Antipolis, CNRS, Côte d’Azur ObservatoryNice Cedex 4France

Personalised recommendations