Granular Matter

, Volume 14, Issue 2, pp 163–168 | Cite as

Evolution of solids fraction surfaces in tapping: simulation and dynamical systems analysis

  • V. Ratnaswamy
  • A. D. Rosato
  • D. Blackmore
  • X. Tricoche
  • N. Ching
  • L. Zuo
Original Paper

Abstract

We report our findings on the evolution of solids fraction in a tapped system of inelastic, frictional spheres as a function of the applied acceleration obtained via discrete element simulations. Animations of the simulation data reveal the propagation of a wave initiated from the base that causes local rearrangements of the particles ultimately leading to the development of a dense microstructure. We also describe the analysis of dynamical models capable of predicting the simulated behavior, and advanced visualization techniques for revealing the dynamics.

Mathematics Subject Classification

35C07 35Q51 37N15 

Keywords

Solids fraction evolution Dynamical systems model Density wave visualization Discrete element simulation Vertical tapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10035_2012_343_MOESM1_ESM.mov (723 kb)
ESM 1 (MOV 723 kb)
10035_2012_343_MOESM2_ESM.m4v (721 kb)
ESM 2 (M4V 722 kb)

References

  1. 1.
    An X.Z. et al.: Micromechanical simulation and analysis of one-dimensional vibratory sphere packing. Phys. Rev. Lett. 95, 205502 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Arsenovic D. et al.: Simulation study of granular compaction dynamics under vertical tapping. Phys. Rev. E 74, 061302 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Barker G.C., Mehta A.: Vibrated powders: structure, correlations and dynamics. Phys. Rev. A 45(6), 3435–3446 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Blackmore D., Samulyak R., Rosato A.: New mathematical models for particle flow dynamics. J. Nonlinear Math. Phys. 6, 198–221 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Blackmore D., Urban K., Rosato A.: Integrability analysis of regular and fractional Blackmore-Samulyak-Rosato fields. Condens. Matter Phys. 13(43403), 1–7 (2010)Google Scholar
  6. 6.
    Blackmore D., Rosato A., Tricoche X., Urban K., Ratnaswamy V.: Tapping dynamics for a column of particles and beyond. J. Mech. Mater. Struct. 6, 71–86 (2011)CrossRefGoogle Scholar
  7. 7.
    Blackmore D., Prykarpatsky A., Samoylenko V.: Nonlinear Dynamics Of Mathematical Physics: Spectral and Symplectic Integrability Analysis. World Scientific, New Jersey (2011)CrossRefGoogle Scholar
  8. 8.
    Blackmore, D., Rosato, A., Tricoche, X., Urban, K., Zuo, L.: Analysis, simulation and visualization of 1D tapping via reduced dynamical models (in preparation)Google Scholar
  9. 9.
    Boutreux T., DeGennes P.G.: Compaction of granular mixtures: a free volume model. Physica A 244, 59–67 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Carvente O., Ruiz-Suarez J.C.: Self assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78, 011302 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Eshuis P., van der Weele K., van der Meer D., Bos R., Lohse D.: Phase diagram of vertically shaken granular matter. Phys. Fluids 19(12), 123301 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Fadeev L., Takhtajan L.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)Google Scholar
  13. 13.
    Hales T.: Cannonballs and honeycombs. Notices AMS 47(4), 440–449 (2005)MathSciNetGoogle Scholar
  14. 14.
    Job S., Melo F., Sokolov A., Sen S.: Solitary wave trains in granular chains, experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)MATHCrossRefGoogle Scholar
  15. 15.
    Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  16. 16.
    Knight J.B., Fandrich C.G., Lau C-N., Jaeger H.M., Nagel S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E. 51(5), 3957 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Kumar V.S., Kumaran V.: Voronoi cell volume distribution and configurational entropy of hard-spheres. J. Chem. Phys. 123, 114501 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Linz S., Dohle A.: Minimal relaxation law for compaction of tapped granular matter. Phys. Rev. E 60(5), 5737–5741 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Louge M.: Impact Parameters. Cornell University, Ithaca (1999)Google Scholar
  20. 20.
    MacKay R., Aubry S.: Proof of existence of breathers for time reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Nadler, S., Bonnefoy, O., Chaix, J.M.G., Thomas, G., Gelet, J.L.: Parametric study of horizontally vibrated grain packings: comparison between discrete element method and experimental results. Eur. Phys. J. E 34(7), art.no. 66 (2011)Google Scholar
  22. 22.
    Nesterenko V.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1984)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Nesterenko V., Daraio C., Herbold E., Jin S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702-1–158702-4 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Nicodemi M., Coniglio A., Herrmann H.J.: Density fluctuations in a model for vibrated granular media. Phys. Rev. E 59(6), 6830–6837 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Nowak E.R., Knight J.B., Povinelli M.L., Jaeger H.M., Nagel S.R.: Reversibility and irreversibility in the packing of vibrated granular materials. Powder Tech. 94(1), 79–83 (1997)CrossRefGoogle Scholar
  26. 26.
    Poggi P., Ruffo S.: Exact solutions in the FPU oscillator chain. Physica D 103, 251–272 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Porter M., Daraio C., Szelengowicz I., Herbold E., Kevrekidis P.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238, 666–676 (2009)ADSMATHCrossRefGoogle Scholar
  28. 28.
    Prykarpatsky A., Mykytiuk I.: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects. Kluwer, Dordrecht (1998)MATHCrossRefGoogle Scholar
  29. 29.
    Pugnaloni L.A. et al.: Nonmonotonic reversible branch in four model granular beds subjected to vertical vibration. Phys. Rev. E 78, 051305 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Ribiere P. et al.: Slow compaction of granular systems. J. Phys. Condens. Matter 17, S2743–S2754 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Rosato A., Dybenko O., Ratnaswamy V., Horntrop D., Kondic L.: Microstructure development in tapped granular systems. Phys. Rev. E 81, 061301 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Sano O.: Dilatancy, buckling, and undulations on a vertically vibrating granular layer. Phys. Rev. E 72(5), 1–7 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sen S., Manciu M.: Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion. Phys. Rev. E 64, 056605-1–056605-4 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Talbot J., Tarjus G., Viot P.: Aging and response properties in the parking lot model. Eur. Phys. J. E 5, 445–449 (2001)CrossRefGoogle Scholar
  35. 35.
    Walton O.R., Braun R.L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mechanica 63(1-4), 73–86 (1986)CrossRefGoogle Scholar
  36. 36.
    Walton O.R.: Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech. Mater. 16, 239–247 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    Zolotaryuk, A., Savin, A., Christiansen, P.: From the FPU chain to biomolecular dynamics. In: Lecture Notes in Physics 542/2000, pp. 393–407 (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • V. Ratnaswamy
    • 1
  • A. D. Rosato
    • 1
  • D. Blackmore
    • 2
  • X. Tricoche
    • 3
  • N. Ching
    • 1
  • L. Zuo
    • 1
  1. 1.Granular Science Laboratory and Mechanical & Industrial Engineering DepartmentNew Jersey Institute of Technology (NJIT)NewarkUSA
  2. 2.Department of Mathematical Sciences and Center for Applied Mathematics and StatisticsNJITNewarkUSA
  3. 3.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations