Granular Matter

, Volume 14, Issue 3, pp 381–392 | Cite as

A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments

  • L. Girolami
  • V. Hergault
  • G. Vinay
  • A. Wachs
Original Paper


In this paper, we used a 3-D discrete-element model, Grains3D, which allows the simulation of unsteady granular flows of monodisperse soft spherical particles in a common situation (i.e., down a rectangular channel). A series of numerical dam-break experiments was performed to predict the behavior of granular columns that propagate down a rough horizontal surface from different initial conditions (varying the initial aspect ratio). Numerical results were compared to those obtained experimentally by Lajeunesse et al. (Phys Fluids 17:103302, 2005) from a similar configuration. Runout distance, temporal flow evolution, deposit morphology and internal flow structures of similar laboratory experiments were quantitatively reproduced as well as prediction of empirical and theoretical scaling laws. This paper highlights that such fully 3-D simulations of soft-spheres can remarkably capture dam-break collapses performed in a rectangular channel. Moreover, Grains3D can provide a complete physical description of such complex unsteady systems which will be the topic of future on-going studies.


Discrete-element modeling Dam-break flows Quantitative reproduction 

List of symbols


Overlap distance between a particle i and j during the collision


Computational time step


Coefficient of restitution


Damping coefficient in the normal direction


Dissipative friction coefficient in the tangential direction


Interparticle Coulomb friction coefficient


Particle-wall Coulomb friction coefficient


Relative angular velocity between a particle i and j


Density of a particle i


Poisson coefficient


Characteristic free fall time of the granular column


Internal friction angle


Initial aspect ratio of the column in the reservoir


Particle diameter


Young modulus


Sum of the forces applied to a particle i


Colliding force between a particle i and j


Normal component of the dissipative force


Hookean elastic restoring force


Shear component of the dissipative force


Flow thickness at the time t


Deposit thickness taken at x = Li


Reservoir height


Initial height of the column


Coefficient of rolling resistance


Stiffness coefficient


Length of the final deposit taken at x = 0


Initial length of the column


Mass of a particle i


Artificial rolling friction


Reduced mass of two particles i and j in contact


Total number of particles constituting the system


Unit normal vector at the contact point


Particle radius


Reduced particle radius


Unit tangential vector at the contact point


Time from gate opening


Relative velocity between a particle i and j in the normal direction


Relative velocity between a particle i and j in the tangential direction


Channel width


Flow length at the time t


Flow length measured from x = Li


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ai J., Chen J.F., Rotter J.M., Ooi J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)CrossRefGoogle Scholar
  2. 2.
    Balmforth N.J., Kerswell R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Barker, G.C.: Computer simulations of granular materials in granular matter: an inter-disciplinary approach. In: Mehta, A. p. 317. Springer (1993)Google Scholar
  4. 4.
    Branney M.J., Kokelaar P.A.: Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. Lond. Mem. 27, 152 (2002)Google Scholar
  5. 5.
    Campbell C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57–92 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Campbell C.S., Brennen C.E.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Campbell C.S., Cleary P.W., Hopkins M.: Large scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res. 100, 8267–8283 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Cleary P.W.: Discrete element modelling of industrial granular flow applications. TASK Q. 2, 385–416 (1998)Google Scholar
  9. 9.
    Cleary P.W., Prakash M.: Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Phil. Trans. R. Soc. Lond. 362, 2003–2030 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Cleary, P.W., Franck, M.: Three-dimensional discrete element simulation of axi-symmetric collapses of granular columns. Preprint (2006)
  11. 11.
    Cundall, P.A.: A computer model for rock-mass behaviour using interactive graphics for the input and output of geometric data. U. S. Nat. Tech. Inf. Serv. Rep.AD/A-001, 602 (1974)Google Scholar
  12. 12.
    Cundall P., Strack O.: Discrete numerical model for granular assemblies. Geotechnics 29, 47–65 (1979)Google Scholar
  13. 13.
    Druitt, T.H., Avard, G., Bruni, G., Lettieri, P., Yates, P.: Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull. Volcanol. doi: 10.1007/s00445-007-0116-7(2007)
  14. 14.
    Girolami, L., Druitt, T.H., Roche, O., Khrabrykh, Z.: Propagation and hindered settling of laboratory ash flows. J. Geophys. Res. 113. doi: 10.1029/2007JB005074 (2008)
  15. 15.
    Girolami L., Roche O., Druitt T.H., Corpetti T.: Particle velocity fields and depositional processes in laboratory ash flows, with implications for the sedimentation of dense pyroclastic flows. Bull.Volc. 72, 747–759 (2010). doi: 10.1007/s00445-010-0356-9 ADSCrossRefGoogle Scholar
  16. 16.
    Grest G.S., Duenweg B., Kremer K.: Link cell fortran code for molecular dynamics simulations for a large number of particles. Comp. Phys. Com. 55(3), 69–285 (1989)CrossRefGoogle Scholar
  17. 17.
    Hendrickson B., Devine K.: Dynamic load balancing in computational mechanics. Comp. Meth. App. Mech. Eng. 184(2–4), 485–500 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hopkins M., Hibler W., Flato G.: On the simulation of the sea ice ridging process. J. Geophys. Res. 96, 4809–4820 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Hutter K., Siegel M., Savage S.B., Nohguchi Y.: Two-dimensional spreading of a granular avalanche down an inclined plane. Acta Math. Acad. Sci. Hung. 100, 37 (1993)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hutter K., Koch T., Pluss C., Savage S.B.: The dynamic of avalanches of granular materials from initiation to runout. Part II: experiments. Acta Mech. 109, 127 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jabbarzadech A., Atkinson J.D., Tanner R.I.: A parallel algorithm for molecular dynamics simulation of branched molecules. Comp. Phys. Com. 150, 65–84 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Kadau D., Schwesig D., Theuerkauf J., Wolf D.E.: Influence of particle elasticity in shear testers. Gran. Matters 8(1), 35–40 (2006). doi: 10.1007/s10035-005-0217-y CrossRefGoogle Scholar
  23. 23.
    Kadau D., Herrmann H.J.: Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition. Phys. Rev. E 83, 031301 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Kerswell R.R.: Dam break with coulomb friction: a model for granular slumping?. Phys. Fluids 17, 057101 (2005)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Khan K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A. 352, 522–524 (2005)CrossRefGoogle Scholar
  26. 26.
    Lacaze, L., Phillips, J., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete-element simulations. Phys. Fluids 20, 063302, 1–12 (2008)Google Scholar
  27. 27.
    Lajeunesse E., Monnier J.B., Homsy G.M.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 17, 103302 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Larrieu E., Staron L., Hinch E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259–270 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Lee J., Herrmann H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A 26, 373–383 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    Levine A.H., Kieffer S.W.: Hydraulics of the august 7, 1980, pyroclastic flow at Mount St. Helens, Washington. Geology 19, 1121–1124 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Li S., Yao Q., Chen B., Zhang X., Ding Y.L.: Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chin. Sci. Bull. 52(5), 692–700 (2007)CrossRefGoogle Scholar
  32. 32.
    Loughlin S.C., Calder E.S., Clarke A.B., Cole P.D., Luckett R., Mangan M., Pyle D., Sparks R.S.J., Voight B., Watts R.B.: Pyroclastic flows and surges generated by the 25 June 1997 dome collapse in: Eruption of Soufriere Hills Volcano, Montserrat from 1995 to 1999. Geol. Soc. Lon. Mem. 21, 191–209 (2002)CrossRefGoogle Scholar
  33. 33.
    Lube G., Huppert H.E., Sparks R.S.J., Hallworth M.: Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175 (2004)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Mangeney A., Heinrich P., Roche R., Boudon G., Cheminée J.L.: Modeling of debris avalanche and generated water waves: Application to real and potential events in Montserrat. Phys. Chem. Earth 25, 741 (2000)Google Scholar
  35. 35.
    Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A.: On the use of Saint-Venant equations for simulating the spreading of a granular mass. J. Geophys. Res. 110 doi: 10.1029/2004JB003161 (2005)
  36. 36.
    Mc Clung D., Schaerer P.: The Avalanche Handbook, pp. 342. The Mountaineers (Seattle) edition, USA (1993)Google Scholar
  37. 37.
    Pacheco P.: Parallel Programming with MPI, pp. 500. Morgan Kaufmann, San Francisco, CA (1997)zbMATHGoogle Scholar
  38. 38.
    Pitman E.B., Nichita C.C., Patra A., Bauer A., Sheridan M., Bursik M.: Computing granular avalanches and landslides. Phys. Fluids 15, 3638 (2003)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Plimpton S.: Fast parallel algorithms for short range molecular dynamics. J. Comput. Phys. 117, 1 (1995)ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 131 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Radjai, F., Dubois, F.: Discrete Element Modeling of Granular Materials. In: Hermes Sciences, Lavoisier (2010)Google Scholar
  42. 42.
    Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Smith B., Bjorstad P., Gropp W.: Domain Decomposition: parallel multilevel methods for elliptic partial differential equations, pp. 224. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  44. 44.
    Sparks R.S.J.: Particle size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23, 147–188 (1976)ADSCrossRefGoogle Scholar
  45. 45.
    Staron L., Hinch E.J.: Study of the collapse of granular columns using 2D discrete-grains simulation. J. Fluid Mech. 545, 1 (2005)ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Tsuji Y., Takana T.: Discrete particule simulation of flow patterns in two-dimensional gas-fluidized beds. Int. J. Mod. Phys. 7, 1889–1898 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part I: numerical model and validations. Powder Technol. submitted (2011)Google Scholar
  48. 48.
    Walton, O.R.: Numerical simulation of inelastic frictional particle-particle interaction. In: Particulate two-phase flow, pp 1002. M. C. Roco, ch. 25, Butterworth-Heinemann Edition, Oxford (1994)Google Scholar
  49. 49.
    Wilson C.J.N.: The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J. Volcanol. Geotherm. Res. 8, 231–249 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    Zenit R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031703 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Zhang J., Hu Z., Ge W., Zhang Y., Li T., Li J.: Application of the discrete approach to the simulation of size segregation in granular chute flow. Ind. Eng. Chem. Res. 43, 5521–5528 (2004)CrossRefGoogle Scholar
  52. 52.
    Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A. 269, 536–553 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fluid Mechanics DepartmentIFP Energies NouvellesRueil-MalmaisonFrance
  2. 2.Fluid Mechanics DepartmentIFP Energies NouvellesSolaizeFrance

Personalised recommendations