Advertisement

Granular Matter

, Volume 14, Issue 2, pp 295–301 | Cite as

Isostaticity in Cosserat continuum

  • Antoinette TordesillasEmail author
  • Jingyu Shi
  • John F. Peters
Original Paper

Abstract

Under conditions of isostaticity in granular media, the contact forces for all particles are statically determinate and forces can be computed without recourse to deformation equations or constitutive relationships. Given that stresses represent spatial averages of inter-particle forces, the stress-equilibrium equations for the isostatic state form a hyperbolic system of partial differential equations that describe the internal stress state using only boundary tractions. In this paper, we consider a Cosserat medium and propose closure relationships in terms of stresses and couple stresses from observations of stress variations in the critical state regime from discrete element simulations and experiments on sand, even though the isostatic condition is only satisfied in an average sense. It is shown that the governing equations are hyperbolic, which can be solved using the method of characteristics. Examples of both analytic and numerical solutions are presented. These examples clearly demonstrate that stress chains (characteristic lines) form oblique angles with the assumed direction of the force chains.

Keywords

Isostaticity Cosserat Granular Force chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spencer A.J.M.: Double-shearing theory applied to instability and strain localization in granular materials. J. Eng. Math. 45, 55–74 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Blumenfeld R.: Stresses in isostatic granular systems and emergence of force chains. Phys. Rev. Lett. 93, 108301 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Blumenfeld R.: Stresses in two-dimensional isostatic granular systems: exact solutions. New J. Phys. 9, 160 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Gerritsen M., Kreiss G., Blumenfeld R.: Stress chain solutions in two-dimensional isostatic granular systems: fabric-dependent paths, leakage, and branching. Phys. Rev. Lett. 101, 098001 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Gerritsen M., Kreiss G., Blumenfeld R.: Analysis of stresses in two-dimensional isostatic granular systems. Physica A 387, 6263–6276 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Blumenfeld R.: Stress transmission and isostatic states of non-rigid particulate systems. Modeling Soft Matter IMA Vol. Math. Its Appl. 141, 235–246 (2005)MathSciNetGoogle Scholar
  7. 7.
    Tordesillas A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag. 87, 4987–5016 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982)CrossRefGoogle Scholar
  9. 9.
    Tordesillas A., Zhang J., Behringer R.P.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4, 3–16 (2009)CrossRefGoogle Scholar
  10. 10.
    Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Oda M., Nemat-Nasser S., Konishi J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)CrossRefGoogle Scholar
  12. 12.
    Arthur J.R.F., Rodriguez del C.J.I., Dunstan T., Chua K.S.: Principal stress rotation: a missing parameter. J. Geotech. Eng. Div. 106(4), 419–433 (1980)Google Scholar
  13. 13.
    Walker D.M., Tordesillas A., Thornton C., Behringer R.P., Zhang J., Peters J.F.: Percolating contact subnetworks on the edge of isostaticity. Granul. Matter 13, 213–240 (2011)CrossRefGoogle Scholar
  14. 14.
    Tordesillas A., O’Sullivan P., Walker D.M., Paramitha S.: Micromechanics of granular materials: evolution of functional connectivity in contact and force chain networks: feature vectors, k-cores and minimal cycles. Comptes Rendus Mécanique 338, 556–569 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J., Hopkins, M.: A complex network analysis of granular fabric in three-dimensions. Dyn. Continuous, Discret Impuls. Syst. Ser. B. (in press) (2012)Google Scholar
  16. 16.
    Tordesillas A., Muthuswamy M.: A thermomicromechanical approach to multiscale continuum modeling of dense granular materials. Acta Geotech. 3, 225–240 (2008)CrossRefGoogle Scholar
  17. 17.
    Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54, 539–542 (2004)CrossRefGoogle Scholar
  18. 18.
    Rechenmacher A.L.: Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Solids 54, 22–45 (2006)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Tordesillas A., Shi J., Tshaikiwsky T.: Stress-dilatancy and force chain evolution. Int. J. Numer. Anal. Meth. Geomech. 35, 264–292 (2011)zbMATHCrossRefGoogle Scholar
  20. 20.
    Tordesillas A., Muthuswamy M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706–727 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Antoinette Tordesillas
    • 1
    Email author
  • Jingyu Shi
    • 1
  • John F. Peters
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia
  2. 2.US Army Engineer Research and Development CenterVicksburgUSA

Personalised recommendations