Granular Matter

, Volume 14, Issue 3, pp 341–362 | Cite as

Shock dynamics in granular chains: numerical simulations and comparison with experimental tests

Original Paper

Abstract

The aim of this paper is to simulate the nonlinear wave propagation in granular chains of beads using a recently introduced multiple impact model and to compare numerical results to experimental ones. Different kinds of granular chains are investigated: monodisperse chains, tapered chains and stepped chains. Particular attention is paid to the dispersion effect, and the wave propagation in tapered chains, the interaction of two solitary waves in monodisperse chains, and the formation of solitary wave trains in stepped chains. We show that the main features of the wave propagation observed experimentally in these granular chains are very well reproduced. This proves that the considered multiple impact model and numerical scheme are able to encapsulate the main physical effects that occur in such multibody systems.

Keywords

Multiple impacts LZB model Tapered chain Stepped chain Solitary wave interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ávalos, E., Sen, S.: How solitary waves collide in discrete granular alignements. Phys. Rev. E 79(046607) (2009)Google Scholar
  2. 2.
    Brilliantov N., Spahn F., Hertzsch J.M., Pöschel T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Brogliato B.: Nonsmooth Mechanics. 2nd edn. Springer, London (1999)MATHCrossRefGoogle Scholar
  4. 4.
    Carretero-González, R., Khatri, D., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102(024102) (2009)Google Scholar
  5. 5.
    Ceanga V., Hurmuzlu Y.: A new look at an old problem: Newton’s cradle. ASME J. Appl. Mech. 68(4), 575–583 (2001)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Coste C., Gilles B.: On the validity of Hertz contact law for granular material acoustics. Eur. Phys. J. B 7, 155–168 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Cundall P., Strack O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–69 (1979)CrossRefGoogle Scholar
  8. 8.
    Daraio, C., Nesterenko, V.: Strongly nonlinear wave dynamics in a chain of polymer coated beads. Phys. Rev. E 73(026612) (2006)Google Scholar
  9. 9.
    Daraio, C., Nesterenko, V., Herbold, E., Jin, S.: Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72(016603) (2005)Google Scholar
  10. 10.
    Daraio, C., Nesterenko, V.F., Herbold, E.B.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(058002) (2006)Google Scholar
  11. 11.
    Darboux G.: Etude géométrique sur les percussions et les chocs des corps. Bulletin des Sciences Mathématiques et Astronomiques, deuxième série 4(1), 126–160 (1880)Google Scholar
  12. 12.
    Doney, R.L., Sen, S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72(041304) (2005)Google Scholar
  13. 13.
    Dorbolo, S., Volfson, D., Tsimring, L., Kudrolli, A.: Dynamics of a bouncing dimer. Phys. Rev. Lett. 95(044101) (2005)Google Scholar
  14. 14.
    Falcon E., Laroche C., Fauve S., Coste S.: Collision of a 1-D column of beads with a wall. Eur. Phys. J. B 5(1), 111–131 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Gharib, M., Celik, A., Hurmuzlu, Y.: Shock absorption using linear particle chains with multiple impacts. ASME J. Appl. Mech. 78(031005) (2011)Google Scholar
  16. 16.
    Glocker C.: Concepts for modeling impacts without friction. Acta Mechanica 168, 1–19 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Harbola, U., Rosas, A., Esposito, M., Lindenberg, K.: Pulse propagation in tapered granular chains: an analytic study. Phys. Rev. E 80(031303) (2009)Google Scholar
  18. 18.
    Harbola, U., Rosas, A., Romero, A.H., Esposito, M., Lindenberg, K.: Pulse propagation in decorated granular chains: An analytical approach. Phys. Rev. Lett. 80(051302) (2009)Google Scholar
  19. 19.
    Harbola, U., Rosas, A., Romero, A.H., Lindenberg, K.: Pulse propagation in randomly decorated chains. Phys. Rev. E 82(011306) (2010)Google Scholar
  20. 20.
    Hascoë E., Herrmann H.J.: Shock in non-loaded bead chains with impurities. Eur. Phys. J. B. 14(1), 183–190 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Hunt K., Crossley F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. Trans. ASME 97, 440–445 (1975)CrossRefGoogle Scholar
  22. 22.
    Job, S., Melo, F., Sokolow, A., Sen, S.: How hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94(178002) (2005)Google Scholar
  23. 23.
    Job S., Melo F., Sokolow A., Sen S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granular Matter 10, 13–20 (2007)MATHCrossRefGoogle Scholar
  24. 24.
    Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear hertzian chains with mass defect. Phys. Rev. E 80(025602(R)) (2009)Google Scholar
  25. 25.
    Johnson K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  26. 26.
    Keller J.B.: Impact with friction. ASME J. Appl. Mech. 53, 1–4 (1986)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Kuwabara G., Kono K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26, 1230–1233 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    Lazaridi A.N., Nesterenko V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Technol. Phys. 26, 405–408 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    Liu, C., Zhao, Z., Brogliato, B.: Energy dissipation and dispersion effects in a granular media. Phys. Rev. E 78(031307) (2008)Google Scholar
  30. 30.
    Liu C., Zhao Z., Brogliato B.: Frictionless multiple impacts in multibody systems: Part I. Theoretical framework. Proc. R. Soc. A 464(2100), 3193–3211 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Liu C., Zhao Z., Brogliato B.: Frictionless multiple impacts in multibody systems: Part II. Numerical algorithm and simulation results. Proc. R. Soc. A 465(2101), 1–23 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Luding, S.: Introduction to discrete element methods: basis of contact force models and how to perform the micro-macro transition to continuum theory. In: Darve, F., Ollivier, J. (eds.) Discrete Modelling of Geomaterials, European Journal of Environmental and Civil Engineering, pp. 785–826. Lavoisier (2008)Google Scholar
  33. 33.
    Manciu M., Sen S., Hurd A.J.: Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Physica D 157, 226–240 (2001)ADSMATHCrossRefGoogle Scholar
  34. 34.
    Melo, F., Job, S., Santibanez, F., Tapia, F.: Experimental evidence of shock mitigation in a hertzian tapered chain. Phys. Rev. E 73(041305) (2006)Google Scholar
  35. 35.
    Mishra B., Murty C.: On the determination of contact parameters for realistic DEM simulations of ball mills. Powder Technol. 115(3), 290–297 (2001)CrossRefGoogle Scholar
  36. 36.
    Nakagawa M., Agui J.H., Wu D.T., Extramiana D.V.: Impulse dispersion in a tapered granular chain. Granular Matter 4, 167–174 (2003)CrossRefGoogle Scholar
  37. 37.
    Nesterenko V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733–743 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. Journal de Physique IV, Colloque C8, supplément au Journal de Physique III 4(C8-729) (1994)Google Scholar
  39. 39.
    Nesterenko V.F.: Dynamics of Heterogeneous Materials. Springer, NewYork (2001)Google Scholar
  40. 40.
    Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95(158702) (2005)Google Scholar
  41. 41.
    Nguyen, N.S., Brogliato, B.: Shock dynamics in granular chains: numerical simulations and comparison with experimental tests. INRIA Research Report RR-7636 (2011). At http://hal.inria.fr/inria-00597468/fr/
  42. 42.
    Paoli L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. (M3AS) 15(1), 1–41 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Payr, M.D.: An experimental and theoretical study of perfect multiple contact collisions in linear chains of bodies. Ph.D. thesis, ETH Zurich (2008)Google Scholar
  44. 44.
    Pfannnes J., Sen S., Chakravarti S., Surve F.I.: Energy absorption and recovery in tapered granular chains: small chains and low tapering. Mater. Res. Soc. Symp. Proc. 759, 147–154 (2003)Google Scholar
  45. 45.
    Ponson, L., Boechler, N., Lai, Y.M., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear waves in disordered diatomic granular chains. Phys. Rev. E 82(021301) (2010)Google Scholar
  46. 46.
    Porter, M.A., Daraio, C., Szelengowicz, I., Herbold, E.B., Kevrekidis, P.G.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D (2009). doi:10.1016/j.physd.2008.12.010
  47. 47.
    Pöschel, T., Brilliantov, N.V.: Extremal collision sequences of particles on a line: optimal transmission of kinetic energy. Phys. Rev. E 63(021505) (2001)Google Scholar
  48. 48.
    Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K.: Observation of two-wave structures in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98(164301) (2007)Google Scholar
  49. 49.
    Sadd M., Tai Q., Shukla A.: Contact law effects on wave propagation in particulate materials using distinct element modeling. Int. J. Non-Linear Mech. 28(2), 251–265 (1993)MATHCrossRefGoogle Scholar
  50. 50.
    Santibanez, F., Munoz, R., Caussarieu, A., Job, S., Melo, F.: Experimental evidence of solitary wave interaction in hertzian chains. Phys. Rev. E 84(026604) (2011)Google Scholar
  51. 51.
    Sen S., Hong J., Bang J., Avalos E., Doney R.L.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Sen S., Manciu F., Manciu M.: Thermalizing an impulse. Physica A 299, 551–558 (2001)ADSMATHCrossRefGoogle Scholar
  53. 53.
    Sokolow, A., Bittle, E.G., Sen, S.: Solitary wave train formation in hertzian chains. Europhys. Lett. 77(24002) (2007)Google Scholar
  54. 54.
    Sokolow, A., Pfannes, J.M.M., Doney, R.L., Nakagawa, M., Agui, J.H., Sen, S.: Absorption of short duration pulses by small, scalable, tapered granular chains. Appl. Phys. Lett. 87(254104) (2005)Google Scholar
  55. 55.
    Stronge W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)MATHCrossRefGoogle Scholar
  56. 56.
    Vergara, L.: Model for dissipative highly nonlinear waves in dry granular systems. Phys. Rev. Lett. 104(118001) (2010)Google Scholar
  57. 57.
    Walton O., Braun R.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5), 949–980 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    Wu D.T.: Conservation principles in solitary impulse propagation through granular chains. Physica A 315, 194–202 (2002)ADSMATHCrossRefGoogle Scholar
  59. 59.
    Yigit A., Ulsoy A., Scott R.: Spring-dashpot models for the dynamics of a radially rotating beam with impact. J. Sound Vib. 142(3), 515–525 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    Zener C.: The intrinsic inelasticity of large plates. Phys. Rev. 59, 669–673 (1941)ADSMATHCrossRefGoogle Scholar
  61. 61.
    Zhang D., Whiten W.: The calculation of contact forces between particles using spring and damping models. Powder Technol. 88(1), 59–64 (1996)CrossRefGoogle Scholar
  62. 62.
    Zhang, H., Brogliato, B.: The planar rocking block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. INRIA Research Report RR-7580 (2011). At http://hal.inria.fr/inria-00579231/en/
  63. 63.
    Zhao Z., Liu C., Brogliato B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A 465(2107), 2267–2292 (2009)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.INRIA, Bipop Team-Project, ZIRST MontbonnotSaint IsmierFrance

Personalised recommendations