Granular Matter

, Volume 14, Issue 3, pp 303–308 | Cite as

Self-assembling of non-Brownian magnetized spheres

  • O. Carvente
  • G. G. Peraza-Mues
  • J. M. Salazar
  • J. C. Ruiz-Suárez
Original Paper

Abstract

If we pour spherical beads in a container and then gently shake it to increase the compaction of the system, the packing fraction will converge logarithmically to 0.64, the density of a random close packing. If the system is specially sheared, or tapped through an annealing procedure, lattices may self-organize. In this work we study granular crystallization induced by magnetic cohesion. We observe an interesting granular polymorphism probably due to an effective van der Waals-like interaction.

Keywords

Compaction Granular lattices Self-organized systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hales T.C.: The sphere packing problem. J. Comput. Appl. Math. 44, 41–76 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Hales T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hales T.C.: A formulation of the Kepler conjecture. Discrete Comput. Geom. 36, 21–69 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Nykypanchuk D., Maye M.M., Van der Lelie D., Gang O.: DNA-guided crystallization of colloidal particles. Nature 451, 549–552 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Scott G.D.: Packing spheres: packing of equal spheres. Nature 188, 908–909 (1960)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Bernal J.D., Finney J.L.: Random packing of spheres in non-rigid containers. Nature 214, 265–266 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Geldart D., Wong A.C.Y.: Fluidization of powders showing degrees of cohesiveness I. Bed expansion. Chem. Eng. Sci. 39, 1481–1488 (1984)CrossRefGoogle Scholar
  8. 8.
    Knight J.B., Fandrich C.G., Lau C.N., Jaeger H.M., Nagel S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957–3963 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Albert R., Albert I., Hornbaker D., Schiffer P., Barabsi A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56, R6271–R6274 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Feng C.L., Yu A.B.: Effect of liquid addition on the packing of mono-sized coarse spheres. Powder Technol. 99, 22–28 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Aste, T., Weaire, D.: The Pursuit of Perfect Packing. Institute of Physics, Bristol, Philadelphia (2000)Google Scholar
  12. 12.
    Aste T.: Variations around disordered close packing. J. Phys. Condens. Matter 17, S2361–S2390 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Pouliquen O., Nicolas M., Weidman P.D.: Crystallization of non-Brownian spheres under horizontal shaking. Phys. Rev. Lett. 79, 3640–3643 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Nicolas M., Duru P., Pouliquen O.: Compaction of a granular material under cyclic shear. Eur. Phys. J. E 3, 309–314 (2000)CrossRefGoogle Scholar
  15. 15.
    Nahmad-Molinari Y., Ruiz-Surez J.C.: Epitaxial growth of granular single crystals. Phys. Rev. Lett. 89, 264302 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Tsai J.C., Voth G.A., Gollub J.P.: Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91, 064301 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Carvente O., Ruiz-Suárez J.C.: Crystallization of confined non-Brownian spheres by vibrational annealing. Phys. Rev. Lett. 95, 018001 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Yu A.B., An X.Z., Zou R.P., Yang R.Y., Kendall K.: Self-assembly of particles for densest packing by mechanical vibration. Phys. Rev. Lett. 97, 265501 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Nowak E.R., Knight J.B., Ben-Naim E., Jaeger H.M., Nagel S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Carvente O., Ruiz-Suárez J.C.: Self-assembling of dry and cohesive non-Brownian spheres. Phys. Rev. E 78, 011302 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    de Gennes P.G., Pincus P.A.: Pair correlations in a ferromagnetic colloid. Phys. Kondens. Materie 11, 189–198 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    Klapp S., Forstmann F.: Crystallization of dipolar hard spheres: density functional results. J. Chem. Phys. 109, 1062–1070 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Levesque D., Weis J.J.: Orientational and structural order in strongly interacting dipolar hard spheres. Phys. Rev. E 49, 5131–5140 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Weis J.J., Levesque D.: Ferroelectric phases of dipolar hard spheres. Phys. Rev. E 48, 3728–3740 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Tao R., Sun J.M.: Three-dimensional structure of induced electrorheological solid. Phys. Rev. Lett. 67, 398–401 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Wen W., Kun F., Pl K.F., Zheng D.W., Tu K.N.: Aggregation kinetics and stability of structures formed by magnetic microsphere. Phys. Rev. E 59, R4758–R4761 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Wen W., Zhang L., Sheng P.: Planar magnetic colloidal crystals. Phys. Rev. Lett. 85, 5464–5467 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Blair D.L., Kudrolli A.: Clustering transitions in vibrofluidized magnetized granular materials. Phys. Rev. E 67, 021302 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Stambaugh J., Lathrop D.P., Ott E., Losert W.: Pattern formation in a monolayer of magnetic spheres. Phys. Rev. E 68, 026207 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Varga I., Yamada H., Kun F., Matuttis H.G., Ito N.: Structure formation in a binary monolayer of dipolar particles. Phys. Rev. E 71, 051405 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Forsyth A.J., Hutton S.R., Rhodes M.J., Osborne C.F.: Effect of applied interparticle force on the static and dynamic angles of repose of spherical granular material. Phys. Rev. E 63, 031302 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Taylor K., King P.J., Swift R.M.: Influence of magnetic cohesion on the stability of granular slopes. Phys. Rev. E 78, 031304 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Forsyth A.J., Hutton S.R., Osborne C.F., Rhodes M.J.: Effects of interparticle force on the packing of spherical granular material. Phys. Rev. Lett. 87, 244301 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Lumay G., Vandewalle N.: Tunable random packings. New J. Phys. 9, 406–415 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Peters F., Lemaire E.: Cohesion induced by a rotating magnetic field in a granular material. Phys. Rev. E 69, 061302 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Fazekas S., Kertsz J., Wolf D.E.: Piling and avalanches of magnetized particles. Phys. Rev. E 71, 061303 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Dolivo-Dobrovolskii V.V.: Tetragonal packings of spheres. Crystallogr. Rep. 47, 723–726 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • O. Carvente
    • 1
  • G. G. Peraza-Mues
    • 1
  • J. M. Salazar
    • 2
  • J. C. Ruiz-Suárez
    • 3
  1. 1.Departamento de Ingeniería FísicaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Laboratoire Interdisciplinaire Carnot de BourgogneUMR 6303 CNRS Université de BourgogneDijon CedexFrance
  3. 3.CINVESTAV-MonterreyApodacaMexico

Personalised recommendations