Granular Matter

, Volume 14, Issue 2, pp 179–184 | Cite as

Suction of splash after impact on dry quick sand

  • G. A. Caballero-Robledo
  • Kevin P. D. Kelly
  • Tess A. M. Homan
  • Joost H. Weijs
  • Devaraj van der Meer
  • Detlef Lohse
Open Access
Original Paper

Abstract

It is well known that a splash occurs when an object impacts at high velocity on a liquid’s surface. If the impact is fast enough, surface tension and air pressure gradients pull the crown-shape splash all the way towards the axis of symmetry, making it to collapse and seal the surface. In this paper we show that splash and surface sealing are also observed in impacts on soft, dry sand. We observe influence of air pressure and grains size on the shape of the splash. By tracking individual grains using high-speed imaging we calculate their acceleration, which results from gravity and drag forces. Assuming friction drag parallel, and pressure drag perpendicular to the direction of motion of grains we estimate the friction and pressure drag contributions to the drag force. Our results support the idea that pressure drag from Bernoulli effect is at the origin of the surface seal.

Keywords

Granular systems Fluidized beds Porous media 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Supplementary material

10035_2012_326_MOESM1_ESM.mpg (2.6 mb)
ESM 1 (MPG 2710 kb)
10035_2012_326_MOESM2_ESM.mpg (4 mb)
ESM 2 (MPG 4098 kb)

References

  1. 1.
    Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Thoroddsen S.T., Shen A.Q.: Granular jets. Phys. Fluids 13, 4–6 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Lohse D., Bergmann R., Mikkelsen R., Zeilstra C., van der D.M., Versluis M., van der K.W., van der M.H., Kuipers H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93(19), 198003 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Mikkelsen R., Versluis M., Koene E., Bruggert G.W., van der Meer D., van der Weele K., Lohse D.: Granular eruptions: void collapse and jet formation. Phys. Fluids 14, S14 (2002)Google Scholar
  5. 5.
    Worthington A.M., Cole R.S.: Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Philos. Trans. Royal Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 194, 175–199 (1900)ADSCrossRefGoogle Scholar
  6. 6.
    Gilbarg D., Anderson R.A.: Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19(2), 127–139 (1948)ADSCrossRefGoogle Scholar
  7. 7.
    Abelson H.I.: Pressure measurements in the water-entry cavity. J. Fluid Mech. 44, 129–144 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    Bergmann R., van der Meer D., Stijnman M., Sandtke M., Prosperetti A., Lohse D.: Giant bubble pinch-off. Phys. Rev. Lett. 96(15), 154505 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Duclaux V., Caillé F., Duez C., Ybert C., Bocquet L., Canet C.: Dynamics of transient cavities. J. Fluid Mech. 591, 1–19 (2007)ADSMATHCrossRefGoogle Scholar
  10. 10.
    Gekle S., Gordillo J.M., van der Meer D., Lohse D.: High-speed jet formation after solid object impact. Phys. Rev. Lett. 102(3), 034502 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Lee M., Longoria R.G., Wilson D.E.: Cavity dynamics in high-speed water entry. Phys. Fluids 9(3), 540–550 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    May A.: Vertical entry of missile into water. J. Appl. Phys. 23(12), 1362–1372 (1952)ADSCrossRefGoogle Scholar
  13. 13.
    Glasheen J.W., McMahon T.A.: Vertical water entry of disks at low Froude numbers. Phys. Fluids 8(8), 2078–2083 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Duez C., Ybert C., Clanet C., Bocquet L.: Making a splash with water repellency. Nat. Phys. 3(3), 180–183 (2007)CrossRefGoogle Scholar
  15. 15.
    Caballero G., Bergmann R., van der Meer D., Prosperetti A., Lohse D.: Role of air in granular jet formation. Phys. Rev. Lett. 99(1), 018001 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    von Kann S., Joubaud S., Caballero-Robledo G.A., Lohse D., van der Meer D.: Effect of finite container size on granular jet formation. Phys. Rev. E 81(4), 041306 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Lohse D., Rauhe R., Bergmann R., van der Meer D.: Creating a dry variety of quicksand. Nature 432, 689 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Deboeuf S., Gondret P., Rabaud M.: Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79(4), 041306 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Royer J.R., Evans D.J., Oyarte L., Guo Q., Kapit E., Mobius M.E., Waitukaitis S.R., Jaeger H.M.: High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459(7250), 1110–1113 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipies: the Art of Scientific Computing. 3rd edn. Cambridge University Press, New York (2007)MATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • G. A. Caballero-Robledo
    • 1
  • Kevin P. D. Kelly
    • 2
  • Tess A. M. Homan
    • 2
  • Joost H. Weijs
    • 2
  • Devaraj van der Meer
    • 2
  • Detlef Lohse
    • 2
  1. 1.CINVESTAV - MonterreyNuevo LeónMéxico
  2. 2.Physics of Fluids, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations