Granular Matter

, Volume 14, Issue 2, pp 259–264

Fabric evolution and accessible geometrical states in granular materials

Original Paper

Abstract

We analyze the geometrical states of granular materials by means of a fabric tensor involving the coordination number and fabric anisotropy as the lowest-order descriptors of the contact network. In particular, we show that the fabric states in this representation are constrained by steric exclusions and the condition of mechanical equilibrium required in the quasi-static limit. A simple model, supported by numerical data, allows us to characterize the range of accessible fabric states and the joint evolution of fabric parameters. The critical state in this framework appears as a jammed state in the sense of a saturation of contact gain and loss along the principal strain-rate directions.

Keywords

Plastic behavior Granular fabric Coordination number Anisotropy Mohr circle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azéma E., Saussine G., Radjai F.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mat. 41, 729–741 (2009)CrossRefGoogle Scholar
  2. 2.
    Radjai F., Richefeu V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mat. 41, 715–728 (2009)CrossRefGoogle Scholar
  3. 3.
    Radjai F., Roux S.: Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89(6), 064302 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Radjai F., Roux S.: Contact dynamics study of 2D granular media: critical states and relevant internal variables. In: Hinrichsen, H., Wolf, D.E. (eds) The Physics of Granular Media, pp. 165–186. Wiley-VCH, Weinheim (2004)Google Scholar
  5. 5.
    Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39, 601–614 (1989)CrossRefGoogle Scholar
  6. 6.
    Roux S., Radjai F.: Statistical approach to the mechanical behavior of granular media. In: Aref, H., Philips, J. (eds) Mechanics for a New Millennium, pp. 181–196. Kluwer Academic Publication, The Netherlands (2001)Google Scholar
  7. 7.
    Satake M.: Fabric tensor in granular materials. In: Vermeer, P.A., Luger, H.J. (eds) Proceedings of the IUTAM Symposium on Deformation and Failure of Granular Materials, Delft, pp. 63–68. A.A. Balkema, Amsterdam (1982)Google Scholar
  8. 8.
    Troadec, H., Radjai, F., Roux, S., Charmet, J.: Model for granular texture with steric exclusion. Phys. Rev. E 66(41), 041305–1 (2002)Google Scholar
  9. 9.
    Wood D.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.LMGCCNRS-Université Montpellier 2MontpellierFrance
  2. 2.LMT-CachanENS de Cachan/CNRS/UPMC/PRES UniverSud ParisCachan CedexFrance

Personalised recommendations