Granular Matter

, Volume 14, Issue 2, pp 191–196 | Cite as

Granular packings of cohesive elongated particles

  • R. C. Hidalgo
  • D. KadauEmail author
  • T. Kanzaki
  • H. J. Herrmann
Original Paper


We report numerical results of effective attractive forces on the packing properties of two-dimensional elongated grains. In deposits of non-cohesive rods in 2D, the topology of the packing is mainly dominated by the formation of ordered structures of aligned rods. Elongated particles tend to align horizontally and the stress is mainly transmitted from top to bottom, revealing an asymmetric distribution of local stress. However, for deposits of cohesive particles, the preferred horizontal orientation disappears. Very elongated particles with strong attractive forces form extremely loose structures, characterized by an orientation distribution, which tends to a uniform behavior when increasing the Bond number. As a result of these changes, the pressure distribution in the deposits changes qualitatively. The isotropic part of the local stress is notably enhanced with respect to the deviatoric part, which is related to the gravity direction. Consequently, the lateral stress transmission is dominated by the enhanced disorder and leads to a faster pressure saturation with depth.


Granular matter Molecular dynamics Non-spherical particles quicksand Collapsible soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pöschel T., Schwager T.: Computational Granular Dynamics. Springer, Berlin (2005)Google Scholar
  2. 2.
    Aranson I.S., Tsimring L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Goldhirsch I.: Rapid granular flows. Ann. Rev. Fluid Mech. 35, 267–293 (2003)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Goldenberg C., Atman A.P.F., Claudin P., Combe G., Goldhirsch I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96, 168001 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Goldhirsch I., Goldenberg C.: On the microscopic foundations of elasticity. Eur. Phys. J. E 9, 245–251 (2002)CrossRefGoogle Scholar
  6. 6.
    Alonso-Marroquín F., Muhlhaus H.B., Hermann H.J.: Micromechanical investigation of granular ratcheting using a discrete model of polygonal particles. Particuology 6, 390–403 (2008)CrossRefGoogle Scholar
  7. 7.
    Galindo-Torres S.A., Alonso-Marroquín F., Wang Y.C., Pedroso D., Muñoz Castaño J.D.: Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity. Phys. Rev. E 79, 060301 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Villarruel F.X., Lauderdale B.E., Mueth D.M., Jaeger H.M.: Compaction of rods: relaxation and ordering in vibrated, anisotropic granular material. Phys. Rev. E 61, 6914 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Blouwolff J., Fraden S.: The coordination number of granular cylinders. Europhys. Lett. 76, 1095 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Desmond K., Franklin S.V.: Jamming of three-dimensional prolate granular materials. Phys. Rev. E. 73, 031306 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Trepanier M., Franklin S.V.: Column collapse of granular rods. Phys. Rev. E 82, 011308 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Zuriguel I., Mullin T., Rotter J.M.: Effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98, 028001 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Lumay G., Vandewalle N.: Experimental study of the compaction dynamics for two-dimensional anisotropic granular materials. Phys. Rev. E 74, 021301 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Azéma E., Radjai F., Saussine G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41, 729–741 (2009)CrossRefGoogle Scholar
  15. 15.
    Hidalgo R.C., Zuriguel I., Maza D., Pagonabarraga I.: Role of particle shape on the stress propagation in granular packings. Phys. Rev. Lett. 103, 118001 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Granular packings of elongated faceted particles deposited under gravity. J. Stat. Mech. 2010, P06025 (2010)Google Scholar
  17. 17.
    Kanzaki, T., Hidalgo, R.C., Maza, D., Pagonabarraga I.: Cooling dynamics of a granular gas of elongated particles. J. Stat. Mech. 2010, P06020 (2010)Google Scholar
  18. 18.
    Mitchell J., Soga K.: Fundamentals of Soil Behavior. Wiley, New Jersey (2005)Google Scholar
  19. 19.
    Rognon P.G., Roux J.-N., Wolf D.E., Naaïm M., Chevoir F.: Rheophysics of cohesive granular materials. Europhys. Lett. 74, 644 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kadau D., Brendel L., Bartels G., Wolf D.E., Morgeneyer M., Schwedes J.: Macroscopic and microscopic investigation on the history dependence of the mechanical properties of powders. Chem. Eng. Trans. 3, 979 (2003)Google Scholar
  21. 21.
    Roeck M., Morgeneyer M., Schwedes J., Kadau D., Brendel L., Wolf D.E.: Steady state flow of cohesive and non-cohesive powders. Investigations in experiment and simulation. Granul. Matt. 10, 285–293 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Gado E.D., Kob W.: A microscopic model for colloidal gels with directional effective interactions: network induced glassy dynamics. Soft Matt. 6, 1547 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Kadau D., Herrmann H.J., Andrade J. Jr., Araújo A., Bezerra L., Maia L.: Living quicksand. Brief Commun. Granul. Matt. 11, 67 (2009)CrossRefGoogle Scholar
  24. 24.
    Kadau D., Herrmann H.J., Andrade J.: Collapsing granular suspensions. Eur. Phys. J. E 30, 275 (2009)CrossRefGoogle Scholar
  25. 25.
    Kadau, D.: Mechanical behavior of “living quicksand”: simulation and experiment. In: Nakagawa, M., Luding, S. (eds.) Powders and Grains 2009, AIP Conference Proceedings, vol. 1145, pp. 981–984. Am. Inst. Phys., Melville (2009)Google Scholar
  26. 26.
    Kadau, D.: From powders to collapsing soil/living quicksand: discrete modeling and experiment. In: Goddard, J.D., Jenkins, J.T. (eds.) IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, AIP Conference Proceedings, vol. 1227, pp. 50–57. Am. Inst. Phys., Melville (2010)Google Scholar
  27. 27.
    Kadau D., Bartels G., Brendel L., Wolf D.E.: Pore stabilization in cohesive granular systems. Phase Transit 76, 315 (2003)CrossRefGoogle Scholar
  28. 28.
    Kadau D., Bartels G., Brendel L., Wolf D.E.: Contact dynamics simulations of compacting cohesive granular systems. Comput. Phys. Commun. 147, 190 (2002)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Bartels G., Unger T., Kadau D., Wolf D., Kertész J.: The effect of contact torques on porosity of cohesive powders. Granul. Matt. 7, 139 (2005)zbMATHCrossRefGoogle Scholar
  30. 30.
    Schwager T., Wolf D.E., Pöschel T.: Fractal substructure of a nanopowder. Phys. Rev. Lett. 100, 218002 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Kadau D., Herrmann H.J.: Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition. Phys. Rev. E 83, 031301 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Landau L.D., Lifshitz E.M.: Theory of Elasticity. Butterworth-Heinemann, Oxford (1986)Google Scholar
  33. 33.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47 (1979)CrossRefGoogle Scholar
  34. 34.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  35. 35.
    Ditlevsen O., Berntsen K.N.: Empirically based gamma-distributed stochastic wall pressure field in silo. J. Eng. Mech. ASCE 5, 561–569 (1999)CrossRefGoogle Scholar
  36. 36.
    Lätzel M., Luding S., Herrmann H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granul. Matt. 2, 123 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. C. Hidalgo
    • 1
  • D. Kadau
    • 2
    Email author
  • T. Kanzaki
    • 3
  • H. J. Herrmann
    • 2
    • 4
  1. 1.Departamento de Física y Matemática AplicadaUniversidad de NavarraPamplonaSpain
  2. 2.Institute for Building MaterialsETH ZürichZurichSwitzerland
  3. 3.Departament de FísicaUniversitat de GironaGironaSpain
  4. 4.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations