Granular Matter

, Volume 14, Issue 2, pp 203–208 | Cite as

“Phonon” conductivity along a column of spheres in contact

Relation to volume fraction invariance in the core of granular flows down inclines
Original Paper

Abstract

We calculate energy conduction and dissipation along a column of spheres linked with linear springs and dashpots to illustrate how grains in simultaneous contact may produce a constant “phonon” conductivity of granular fluctuation kinetic energy. In the core of dense unconfined granular flows down bumpy inclines, we show that phonon conductivity dominates its counterpart calculated from gas kinetic theory. However, the volume dissipation rate of phonon fluctuation energy is of the same order as the kinetic theory prediction.

Keywords

Granular conduction Dense flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silbert L.E., Ertaş D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(051302), 1–14 (2001)Google Scholar
  2. 2.
    Jenkins J.T., Richman M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, 355–377 (1985)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kumaran V.: Dense granular flow down an inclined plane: from kinetic theory to granular dynamics. J. Fluid Mech. 599, 121–168 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Garzó V., Dufty J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Pöschel T., Salueña C., Schwager T.: Scaling properties of granular materials. Phys. Rev. E 64, 011308 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Campbell C.: Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261–291 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Campbell C.: A problem related to the stability of force chains. Granul. Matter 5, 129–134 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Radjai F., Wolf D.E., Jean M., Moreau J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005). doi:10.1038/nature03805 ADSCrossRefGoogle Scholar
  10. 10.
    Morris J.F., Katyal B.: Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14, 1920–1937 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Liu C., Nagel S.R.: Sound in a granular material: disorder and nonlinearity. Phys. Rev. B 48, 15646–15650 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Liu C.: Spatial patterns of sound propagation in sand. Phys. Rev. B 50, 782–794 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Hostler S.R., Brennen C.E.: Pressure wave propagation in a granular bed. Phys. Rev. E 72(031303), 1–13 (2005)Google Scholar
  14. 14.
    Jia X., Caroli C., Velicky B.: Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82, 1863–1866 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Jia X.: Codalike multiple scattering of elastic waves in dense granular media. Phys. Rev. Lett. 93(154303), 1–4 (2004)Google Scholar
  16. 16.
    Tournat V., Zaitsev V., Gusev V., Nazarov V., Béquin P., Castagnède B.: Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy. Phys. Rev. Lett. 92(085502), 1–4 (2004)Google Scholar
  17. 17.
    Kondic L., Behringer R.P.: Elastic energy, fluctuations and temperature for granular materials. Europhys. Lett. 67, 205–211 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Hinch E.J., Saint-Jean S.: The fragmentation of a line of balls by an impact. Proc. R. Soc. Lond. A 455, 3201–3220 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Coste C., Falcon E., Fauve S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Falcon E., Laroche C., Fauve S., Coste C.: Collision of a 1-D column of beads with a wall. Eur. Phys. J. B 5, 111–131 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Pöschel T., Schwager T., Salueña C.: Onset of fluidization in vertically shaken granular material. Phys. Rev. E 62, 1361–1367 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Renard S., Schwager T., Pöschel T., Salueña C.: Vertically shaken column of spheres. Onset of fluidization. Eur. Phys. J. E 4, 233–239 (2001)CrossRefGoogle Scholar
  23. 23.
    Leibig M.: Model for the propagation of sound in granular materials. Phys. Rev. E 49, 1647–1656 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Somfai E., Roux J.-N., Snoeijer J.H., van Hecke M., van Saarloos W.: Elastic wave propagation in confined granular systems. Phys. Rev. E 72(021301), 1–18 (2005)Google Scholar
  25. 25.
    Rioual, F.: Étude de quelques aspects du transport éolien: processus de saltation et formation des rides, PhD thesis, Université de Rennes 1 (2002)Google Scholar
  26. 26.
    Rajchenbach J.: Dense, rapid flows of inelastic grains under gravity. Phys. Rev. Lett. 90(144302), 1–4 (2003)Google Scholar
  27. 27.
    Pöschel T., Brilliantov N.V.: Extremal collision sequences of particles on a line: optimal transmission of kinetic energy. Phys. Rev. E 63(021505), 1–9 (2001)Google Scholar
  28. 28.
    Gurevich V.L.: Transport in Phonon Systems, pp. 115. North-Holland, Amsterdam (1986)Google Scholar
  29. 29.
    Staron L.: Correlated motion in the bulk of dense granular flows. Phys. Rev. E 77(051304), 1–6 (2008)Google Scholar
  30. 30.
    da Cruz F., Emam S., Prochnow M., Roux J.-N., Chevoir F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(021309), 1–17 (2005)Google Scholar
  31. 31.
    Pouliquen O.: Velocity correlations in dense granular flows. Phys. Rev. Lett. 93(248001), 1–4 (2004)Google Scholar
  32. 32.
    Ertaş, D., Halsey, T.C.: Coherent structures in dense granular flows. arXiv:cond-mat/0506170v1 (2005)Google Scholar
  33. 33.
    Louge M.Y.: Model for dense granular flows down bumpy inclines. Phys. Rev. E 67(061303), 1–11 (2003)Google Scholar
  34. 34.
    Jenkins J.T.: Dense inclined flows of inelastic spheres. Granul. Matter 10, 47–52 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Sibley School of Mechanical & Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations