Advertisement

Granular Matter

, Volume 14, Issue 2, pp 175–178 | Cite as

Flow regimes of a fluid driven granular suspension

  • Romain Bureau
  • Samuel Brand
  • Robin C. Ball
  • Mario Nicodemi
Original Paper
  • 177 Downloads

Abstract

We discuss molecular dynamics simulations of a granular suspension driven in a channel by an embedding fluid. The flow has three different regimes: it is disordered at small packing fractions, \({\phi}\); above a transition point, \({\phi_m}\), flows becomes ordered in layers, but only in a fraction of samples; at higher \({\phi}\), if ordering is avoided, jamming is also encountered. In the disordered flow regime the velocity profile is power law, consistent with an Ostwald-de Waele constitutive relation. In the ordered regime, flow is concentrated in the bulk in a nearly solid plug having a flat velocity profile, with narrow shear regions at the boundaries. Interestingly, velocity fluctuations are approximately linear in the velocity in all regimes.

Keywords

Granular suspensions Rheology Computer simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu A., Nagel S.: Jamming is not just cool any more. Nature 396, 21 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Coniglio, A., Fierro, A., Herrmann, H.M.N. (eds): Unifying Concepts in Granular Media and Glasses. Elsevier, Amsterdam (2004)Google Scholar
  3. 3.
    Richard P., Nicodemi M., Delannay R., Ribiére P., Bideau D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4, 121 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Caglioti E., Coniglio A., Herrmann H., Loreto V., Nicodemi M.: Segregation of granular mixtures in presence of compaction. Europhys. Lett. 43, 591 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Majmudar T., Sperl M., Luding S., Behringer R.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Coussot P.: Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3, 528 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Isa L., Besseling R., Poon W.C.K.: Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys. Rev. Lett. 98, 198305 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    van Megen W., Martinez V.A., Bryant G.: Arrest of flow and emergence of activated processes at the glass transition of a suspension of particles with hard spherelike interactions. Phys. Rev. Lett. 102, 168301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Fall A., Bertrand F., Ovarlez G., Bonn D.: Yield stress and shear banding in granular suspensions. Phys. Rev. Lett. 103, 178301 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Brand S., Ball R., Nicodemi M.: Stochastic transitions and jamming in granular pipe flow. Phys. Rev. E 83, 031309 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Tsai J.C., Voth G., Gollub J.P.: Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91, 064301 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Daniels K., Behringer R.: Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow. Phys. Rev. Lett. 94, 168001 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Silbert L., Ertas D., Grest G., Halsey T., Levine D., Plimpton S.: Phys. Rev. E 64, 051302 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Grebenkov D., Pica-Ciamarra M., Nicodemi M., Coniglio A.: Flow, ordering, and jamming of sheared granular suspensions. Phys. Rev. Lett. 100, 078001 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Coniglio A., Nicodemi M.: The jamming transition of granular media. J. Phys. Cond. Mat. 12, 6601 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Tarzia M., Candia A.D., Fierro A., Coniglio A., Nicodemi M.: Glass transition in granular media. Europhys. Lett. 66, 531 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Nicodemi M.: Dynamical response functions in models of vibrated granular media. Phys. Rev. Lett. 82, 3734 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Nicodemi M.: Force correlations and arches formation in granular assemblies. Phys. Rev. Lett. 80, 1340 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Alder B., Wainwright T.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208 (1957)ADSCrossRefGoogle Scholar
  21. 21.
    Rintoul M., Torquato S.: Computer simulations of dense hard-sphere systems. J. Chem. Phys. 105, 9258 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Richard P. et al.: Order and disorder in hard-sphere packings. Europhys. Lett. 48, 415 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Silbert L. et al.: Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E 65, 051307 (2002)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Richard P. et al.: Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101, 248002 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Melrose J.R., Ball R.C.: Contact networks in continuously shear thickening colloids. J. Rheol. 48, 961 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today p. 27 (2009)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Romain Bureau
    • 1
  • Samuel Brand
    • 1
  • Robin C. Ball
    • 1
  • Mario Nicodemi
    • 2
  1. 1.Department of Physics and Complexity Science CentreUniversity of WarwickCoventryUK
  2. 2.Dip.to di Scienze FisicheUniversitá di Napoli “Federico II”, CNR-SPIN, INFNNapoliItaly

Personalised recommendations