Granular Matter

, 13:493 | Cite as

Structural characterization of two-dimensional granular systems during the compaction

  • S. Živković
  • Z. M. Jakšić
  • D. Arsenović
  • Lj. Budinski-Petković
  • S. B. Vrhovac
Original Paper


We examine numerically the density relaxation of frictional hard disks in two dimensions (2D), subjected to vertical shaking. Dynamical recompression of the packing under the action of gravity is based on an efficient event-driven molecular-dynamics algorithm. To quantify the changes in the internal structure of packing during the compaction, we use the Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different domains in the packing. It is found that the narrowing of the probability distribution of the shape factor during the compaction is in accordance with the fact that the packings of monodisperse hard disks spontaneously assemble into regions of local crystalline order. An interpretation of the memory effects observed for a sudden perturbation of the tapping intensity is provided by the analysis the accompanying transformations of disk packings at a “microscopic” level. In addition, we investigate the distributions of the shape factor in a 2D granular system of metallic disks experimentally, and compare them with the simulation results.


Granular compaction Memory effects Shape factor Molecular dynamics 


  1. 1.
    Knight J.B., Fandrich C.G., Lau C.N., Jaeger H.M., Nagel S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957–3963 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Philippe P., Bideau D.: Compaction dynamics of granular medium under vertical tapping. Europhys. Lett. 60, 677 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Ribière P., Richard P., Bideau D., Delannay R.: Experimental compaction of anisotropic granular media. Eur. Phys. J. E 16, 415–420 (2005)CrossRefGoogle Scholar
  4. 4.
    Ribière P., Richard P., Philippe P., Bideau D., Delannay R.: On the existence of stationary states during granular compaction. Eur. Phys. J. E 22, 249–253 (2007)CrossRefGoogle Scholar
  5. 5.
    Lumay G., Vandewalle N.: Experimental study of granular compaction dynamics at different scales: grain mobility, hexagonal domains, and packing fraction. Phys. Rev. Lett. 95, 028002 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Kolan A.J., Nowak E.R., Tkachenko A.V.: Glassy behavior of the parking lot model. Phys. Rev. E 59, 3094 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Talbot J., Tarjus G., Viot P.: Adsorption-desorption model and its application to vibrated granular materials. Phys. Rev. E 61, 5429–5438 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Talbot J., Tarjus G., Viot P.: Aging and response properties in the parking-lot model. Eur. Phys. J. E 5, 445–449 (2001)CrossRefGoogle Scholar
  9. 9.
    Coniglio A., Herrmann H.J.: Phase transition in granular packing. Phys. A 255, 1–6 (1996)CrossRefGoogle Scholar
  10. 10.
    Nicodemi M., Coniglio A., Herrmann H.J.: The compaction in granular media and frustrated Ising models. J. Phys. A Math. Gen. 30, L379–385 (1997)ADSMATHCrossRefGoogle Scholar
  11. 11.
    Nicodemi M., Coniglio A.: Aging in out-of-equilibrium dynamics of models for granular media. Phys. Rev. Lett. 82, 916– 919 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Barrat A., Loreto V.: Response properties in a model for granular matter. J. Phys. A Math. Gen. 33, 4401–4426 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Fierro A., Nicodemi M., Coniglio A.: Thermodynamics and statistical mechanics of frozen systems in inherent states. Phys. Rev. E 66, 061301 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Brey J.J., Prados A., Sanchez-Rey B.: Simple model with facilitated dynamics for granular compaction. Phys. Rev. E 60, 5685–5692 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Prados A., Brey J.J.: Effective dynamics and steady state of an ising model submited to tapping processes. Phys. Rev. E 66, 041308 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Brey J.J., Prados A.: Closed model for granular compaction under weak tapping. Phys. Rev. E 68, 051302 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Barker G.C., Mehta A.: Vibrated powders: structure, correlations, and dynamics. Phys. Rev. A 45, 3435–3446 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Mehta, A., Barker, G.C., Luck, J.M.: Cooperativity in sandpiles: statistics of bridge geometries. J. Stat. Mech. Theor. Exp. P10014 (2004)Google Scholar
  19. 19.
    Philippe P., Bideau D.: Numerical model for granular compaction under vertical tapping. Phys. Rev. E 63, 051304 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Nasuno S., Kudrolli A., Gollub J.P.: Friction in granular layers: hysteresis and pre-cursors. Phys. Rev. Lett. 79, 949–952 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    Moon S.J., Swift J.B., Swinney H.L.: Role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69, 031301 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Arsenović D., Vrhovac S.B., Jakšić Z.M., Budinski-Petković L., Belić A.: Simulation study of granular compaction dynamics under vertical tapping. Phys. Rev. E 74, 061302 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Walton O.R., Braun R.L.: Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Herbst O., Huthmann M., Zippelius A.: Dyamics of inelastically colliding spheres with Coulomb friction. Granul. Matter 2, 211 (2000)CrossRefGoogle Scholar
  25. 25.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  26. 26.
    Moučka F., Nezbeda I.: Detection and characterization of structural changes in the harddisk fluid under freezing and melting conditions. Phys. Rev. Lett. 94, 040601 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Josserand C., Tkachenko A., Mueth D.M., Jaeger H.M.: Memory effects in granular materials. Phys. Rev. Lett. 85, 3632–3635 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Pouliquen O., Belzons M., Nicolas M.: Fluctuating particle motion during shear induced granular compaction. Phys. Rev. Lett. 91, 014301 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Jakšić Z.M., Vrhovac S.B., Panić B.M., Nikolić Z., Jelenković B.M.: Upward penetration of grains through a granular medium. Eur. Phys. J. E 27, 345–356 (2008)CrossRefGoogle Scholar
  30. 30.
    Lubachevsky B.D.: How to simulate billiards and similar systems. J. Comp. Phys. 94, 255 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Falcon E., Laroche C., Fauve S., Coste C.: Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B 3, 45–57 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    McNamara S., Falcon E.: Simulations of vibrated granular medium with impact-velocity dependent restitution coefficient. Phys. Rev. E 71, 031302 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)MATHGoogle Scholar
  34. 34.
    Barber C.B., Dobkin D.P., Huhdanpaa H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469 (1996)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Richard P., Troadec J.P., Oger L., Gervois A.: Effect of the anisotropy of the cells on the topological properties of two- and three-dimensional froths. Phys. Rev. E 63, 062401 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    Drew, B.: Hough transform. From MathWorld-A Wolfram Web Resource, created by Eric W. Weisstein.
  37. 37.
    Pugnaloni L.A., Barker G.C.: Structure and distribution of arches in shaken hard sphere deposits. Phys. A 337, 428–442 (2004)CrossRefGoogle Scholar
  38. 38.
    Pugnaloni L.A., Valluzzi M.G., Valluzzi L.G.: Arching in tapped deposits of hard disks. Phys. Rev. E 73, 051302 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Berardi C.R., Barros K., Douglas J.F., Losert W.: Direct observation of stringlike collective motion in a two-dimensional driven granular fluid. Phys. Rev. E 81, 041301 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Ribière P., Richard P., Delannay R., Bideau D.: Effect of rare events on out-ofequilibrium relaxation. Phys. Rev. Lett. 95, 268001 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Marty G., Dauchot O.: Subdiffusion and cage effect in a sheared granular material. Phys. Rev. Lett. 94, 015701 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Nicolas M., Duru P., Pouliquen O.: Compaction of a granular material under cyclic shear. Eur. Phys. J. E 3, 309–314 (2000)CrossRefGoogle Scholar
  43. 43.
    Vargas W.L., McCarthy J.J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 76, 041301 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of the collision properties of small spheres. Phys. Fluids 6, 1108 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    Bernu B., Delyon F., Mazighi R.: Steady states of a column of shaken inelastic beads. Phys. Rev. E 50, 4551 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    McNamara S., Young W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    Luding S., McNamara S.: How to handle the inelastic collapse of a dissipative hard-sphere gas with TC model. Granul. Matter 1, 113–128 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Živković
    • 1
  • Z. M. Jakšić
    • 1
  • D. Arsenović
    • 1
  • Lj. Budinski-Petković
    • 2
  • S. B. Vrhovac
    • 1
  1. 1.Institute of PhysicsUniversity of BelgradeZemun, BelgradeSerbia
  2. 2.Faculty of EngineeringNovi SadSerbia

Personalised recommendations