Advertisement

Granular Matter

, Volume 13, Issue 3, pp 219–223 | Cite as

A micromechanical model of collapsing quicksand

  • Dirk KadauEmail author
  • José S. AndradeJr.
  • Hans J. Herrmann
Original Paper

Abstract

The discrete element method constitutes a general class of modeling techniques to simulate the microscopic behavior (i.e.  at the particle scale) of granular/soil materials. We present a contact dynamics method, accounting for the cohesive nature of fine powders and soils. A modification of the model adjusted to capture the essential physical processes underlying the dynamics of generation and collapse of loose systems is able to simulate “quicksand” behavior of a collapsing soil material, in particular of a specific type, which we call “living quicksand”. We investigate the penetration behavior of an object for varying density of the material. We also investigate the dynamics of the penetration process, by measuring the relation between the driving force and the resulting velocity of the intruder, leading to a “power law” behavior with exponent 1/2, i.e.  a quadratic velocity dependence of the drag force on the intruder.

Keywords

Granular matter Contact dynamics simulations Distinct element method Quicksand Collapsible soil Biomaterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freundlich H., Juliusburger F.: Quicksand as a thixotropic system. Trans. Faraday Soc. 31, 769 (1935)CrossRefGoogle Scholar
  2. 2.
    Matthes G.H.: Quicksand. Sci. Am. 188, 97 (1953)CrossRefGoogle Scholar
  3. 3.
    Kruszelnicki K.: And the earth did swallow them up!. New Sci. 152, 26 (1996)Google Scholar
  4. 4.
    Bahlmann L., Klaus S., Heringlake M., Baumeier W., Schmucker P., Wagner K.F.: Rescue of a patient out of a grain container: the quicksand effect of grain. Resuscitation 53, 101 (2002)CrossRefGoogle Scholar
  5. 5.
    Yamasaki S.: What is quicksand?. Sci. Am. 288, 95 (2003)CrossRefGoogle Scholar
  6. 6.
    Smith E.R.: The lifting effect of quicksand. Ohio J. Sci. 46, 327 (1946)Google Scholar
  7. 7.
    Craig R.F.: Soil Mechanics. E & FN Spon, New York (1997)Google Scholar
  8. 8.
    El Shamy, U., Zeghal, M.: Coupled continuum-discrete model for saturated granular soils, Eng. Mech. 413–426 (2005)Google Scholar
  9. 9.
    Vardoulakis I.: Shear-banding and liquefaction in granular-materials on the basis of a Cosserat continuum theory. Ingenieur Archiv. 59(2), 106 (1989)CrossRefGoogle Scholar
  10. 10.
    Vardoulakis I.: Fluidisation in artesian flow conditions: hydromechanically unstable granular media. Geotechnique 54(3), 165 (2004)CrossRefGoogle Scholar
  11. 11.
    Vardoulakis I.: Fluidisation in artesian flow conditions: Hydromechanically stable granular media. Geotechnique 54(2), 117 (2004)CrossRefGoogle Scholar
  12. 12.
    Huerta D.A., Sosa V., Vargas M.C., Ruiz-Suarez J.C.: Archimedes’ principle in fluidized granular systems. Phys. Rev. E 72, 031307 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Castro G.: Liquefaction and cyclic mobility of saturated soils. J. Geotech. Eng. Div. 101, 551 (1975)Google Scholar
  14. 14.
    Ishihara K.: Liquefaction and flow failure during earthquakes. Geotech. 43, 351 (1993)CrossRefGoogle Scholar
  15. 15.
    Pastor, M., Zienkiewicz, O.C., Chan, A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. for Num. and Analyt. Meth. in Geomech. 14 (1990)Google Scholar
  16. 16.
    Lambe T.W., Whitman R.V.: Soil Mechanics. Wiley, New York (1969)Google Scholar
  17. 17.
    Khaldoun A., Eiser E., Wegdam G., Bonn D.: Liquefaction of quicksand under stress. Nature 437, 635 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Lohse D., Rauhe R., Bergmann R., van der Meer D.: Creating a dry variety of quicksand. Nature 432, 689 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Royer J., Corwin E., Flior A., Cordero M.L., Rivers M., Eng P., Joeger H.M.: Formation of granular jets observed by high-speed x-ray radiography. Nat. Phys. 1(3), 164 (2005)CrossRefGoogle Scholar
  20. 20.
    Kadau D., Herrmann H., Andrade J., Araújo A., Bezerra L., Maia L.: Living quicksand. Granul. Matter 11, 67 (2009)CrossRefGoogle Scholar
  21. 21.
    Kadau, D., Herrmann, H., Andrade, J.: Mechanical behaviour of “living quicksand”: simulation and experiment. Powders and grains. AIP conference proceedings. vol. 1145. In: Nakagawa M., Luding S. (eds.). Amer. Inst. Physics. AIP Conference Proceedings. vol. 1145, pp. 981–984 (2009)Google Scholar
  22. 22.
    Kadau D., Herrmann H., Andrade J.: Collapsing granular suspensions. Eur. Phys. J. E 30, 275 (2009)CrossRefGoogle Scholar
  23. 23.
    Kadau, D.: From powders to collapsing soil/living quicksand: Discrete modeling and experiment. IUTAM-ISIMM symposium on mathematical modeling and physical instances of granular flows AIP Conference Proceedings vol. 1227. In: Goddard, P.G. J. D., Jenkins, J.T. (eds.). Amer. Inst. Physics. AIP Conference Proceedings, vol. 1227, pp. 50–57 (2010)Google Scholar
  24. 24.
    Moreau J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A-Solid 13, 93 (1994)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jean, M., Moreau, J.J.: Unilaterality and dry friction in the dynamics of rigid body collections. In Contact Mechanics International Symposium (Presses Polytechniques et Universitaires Romandes, Lausanne), pp. 31–48 (1992)Google Scholar
  26. 26.
    Kadau D., Bartels G., Brendel L., Wolf D.E.: Pore stabilization in cohesive granular systems. Phase Transit. 76, 315 (2003)CrossRefGoogle Scholar
  27. 27.
    Taboada A., Estrada N., Radjai F.: Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett. 97, 098302 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Richefeu V., Youssoufi M.E.A. et al.: Force transmission in dry and wet granular media. Powder Technol. 190, 258 (2009)CrossRefGoogle Scholar
  29. 29.
    Kadau D., Brendel L., Bartels G., Wolf D., Morgeneyer M., Schwedes J.: Macroscopic and microscopic investigation on the history dependence of the mechanical properties of powders. Chem. Eng. Trans. 3, 979 (2003)Google Scholar
  30. 30.
    Bartels G., Unger T., Kadau D., Wolf D., Kertész J.: The effect of contact torques on porosity of cohesive powders. Granul. Matter 7, 139 (2005)zbMATHCrossRefGoogle Scholar
  31. 31.
    Brendel L., Kadau D., Wolf D., Morgeneyer M., Schwedes J.: Compaction of cohesive powders: A novel description. AIDIC Conf. Ser. 6, 55 (2003)Google Scholar
  32. 32.
    Morgeneyer M., Röck M., Schwedes J., Brendel L., Kadau D., Wolf D., Heim L.O.: Compaction and mechanical properties of cohesive granular media. Schriftenreihe Mechanische Verfahrenstechnik: Behavior Granular Media 9, 107 (2006)Google Scholar
  33. 33.
    Caballero G., Bergmann R., van der Meer D., Prosperetti A., Lohse D.: Role of air in granular jet formation. Phys. Rev. Lett. 99, 018001 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dirk Kadau
    • 1
    Email author
  • José S. AndradeJr.
    • 2
  • Hans J. Herrmann
    • 1
    • 2
  1. 1.Institute for Building Materials, ETH ZurichZürichSwitzerland
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortaleza, CearáBrazil

Personalised recommendations