Granular Matter

, Volume 13, Issue 1, pp 93–105

Precursors of failure and weakening in a biaxial test

Original Paper


We study numerical simulations of large (\({N{\approx}10^4}\)) two-dimensional quasi-static granular assemblies subjected to a slowly increasing deviator stress. We report some peculiarities in the behavior of these packings that have not yet been addressed. The number of sliding contacts is not necessarily related to stability: first the number of sliding contacts rises linearly and smoothly with the applied stress. Then, at approximately half the peak stress, the increase slows down, a plateau develops, and a decrease follows. The spatial organization of sliding contacts also changes: during the first half of the simulation, sliding contacts are uniformly distributed throughout the packing, but in the second half, they become concentrated in certain regions. This suggests that the loss of homogeneity occurs well before the appearance of shear bands. During the second half events appear where the number of sliding contacts drops suddenly, and then rapidly recovers. We show that these events are in fact local instabilities in the packing. These events become more frequent as failure is approached. For these two reasons, we call these events precursors, since they are similar to the precursors recently observed in both numerical (Staron et al. Phys Rev Lett 89:204302, 2002; Nerone et al. Phys Rev E 67:011302, 2003) and experimental (Gibiat et al. J Acoust Soc Am 123:3142, 2009; Scheller et al. Phys Rev E 74:031311, 2006; Zaitsev et al. Eur Phys Lett 83:64003, 2008; Aguirre et al. Phys Rev E 73:041307, 2006) studies of avalanches.


Sliding Precursor Instability Failure Collapse Biaxial test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Staron L., Vilotte J.-P., Radjai F.: Preavalanche instabilities in a granular pile. Phys. Rev. Lett. 89, 204302 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Nerone N. et al.: Instabilities in slowly driven granular packings. Phys. Rev. E 67, 011302 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Gibiat V., Plaza E., De Guilbert P.: Acoustic emission before avalanches in granular media. J. Acoust. Soc. Am. 123, 3142 (2009)CrossRefADSGoogle Scholar
  4. 4.
    Scheller T. et al.: Precursors to avalanches in a granular monolayer. Phys. Rev. E 74, 031311 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Zaitsev V.Y. et al.: Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence. Eur. Phys. Lett. 83, 64003 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Aguirre M.A. et al.: Rearrangements in a two-dimensional packing of disks. Phys. Rev. E 73, 041307 (2006)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Luding S.: Micromacro models for anisotropic granular media. In: Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm, E. (eds) Modelling of Cohesive-Frictional Materials, pp. 195–206. Balkema, Leiden (2004)CrossRefGoogle Scholar
  8. 8.
    Luding S.: Anisotropy in cohesive, frictional granular media. J. Phys. Condens. Matter 17, 2623 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Kaneko K., Terada K., Kyoya T., Kishino Y.: Globallocal analysis of granular media in quasi-static equilibrium. Int. J. Solids Struct. 40, 4043 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Madadi M., Tsoungui O., Lätzel M., Luding S.: On the fabric tensor of polydisperse granular materials in 2D. Int. J. Solids Struct. 41, 2563–2580 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Cates M.E., Wittmer J.P., Bouchaud J.-P., Claudin P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Makse H.A., Johnson D.L., Schwartz L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Coppersmith S.N., Liu C.-h., Majumdar S., Narayan O., Witten T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673 (1996)CrossRefADSGoogle Scholar
  14. 14.
    Alonso-Marroquín F. et al.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Staron L., Radjai F.: Friction versus texture at the approach of a granular avalanche. Phys. Rev. E 72, 041308 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Gerritsen M., Kreiss G., Blumenfeld R.: Analysis of stresses in two-dimensional isostatic granular systems. Physica A Stat. Mech. Appl. 387, 6263 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Snoeijer J.H. et al.: Sheard force networks: anisotropies, yielding, and geometry. Phys. Rev. Lett. 96, 098001 (2006)CrossRefADSGoogle Scholar
  18. 18.
    García-Rojo R., Alonso-Marroquín F., Herrmann H.J.: Characterization of the material response in granular ratcheting. Phys. Rev. E 72, 041302 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Alonso-Marroquín F., Herrmann H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92, 054301 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Peña A.A., Herrmann H.J., Lizcano A., Alonso/Marroquìn F. et al.: Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: Garcí a-Rojo, R. (ed.) Powders and Grains 2005, pp. 697–700. Balkema, Leiden (2005)Google Scholar
  21. 21.
    Zhang L., Thornton C. et al.: Characteristics of granular media at the ‘critical state’. In: Garcí a-Rojo, R. (ed.) Powders and Grains 2005, pp. 267–270. Balkema, Leiden (2005)Google Scholar
  22. 22.
    Unger T., Török J., Kertész J., Wolf D.E.: Shear band formation in granular media as a variational problem. Phys. Rev. Lett. 92, 214301 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Welker P., McNamara S.: What triggers failure in frictional granular assemblies?. Phys. Rev. E 79, 061305 (2009)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47 (1979)CrossRefGoogle Scholar
  25. 25.
    Garcìa-Rojo R., McNamara S., Peña A.A., Herrmann H.J. et al.: Sliding and localization in a biaxial test of granular material. In: Garcí a-Rojo, R. (ed.) Powders and Grains 2005, pp. 705–708. Balkema, Leiden (2005)Google Scholar
  26. 26.
    Radjai F., Wolf D.E., Jean M., Moreau J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61 (1998)CrossRefADSGoogle Scholar
  27. 27.
    Getis A., Boots B.: Models of Spatial Processes. Cambridge University Press, Cambridge (1979)Google Scholar
  28. 28.
    Hidalgo R., Grosse C.U., Kun F., Reinhardt H.W., Herrmann H.J.: Evolution of percolating force chains in compressed granular media. Phys. Rev. Lett. 89, 205501 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Jia X.: Codalike multiple scattering of elasticwaves in dense granular media. Phys. Rev. Lett. 93, 154303 (2004)CrossRefADSGoogle Scholar
  30. 30.
    Guarino A., Garcimartín A., Ciliberto S.: An experimental test of the critial behaviour of fracture precursors. Eur. Phys. J. B 6, 13 (1998)CrossRefADSGoogle Scholar
  31. 31.
    El Shourbagy S.A.M., Okeda S., Matuttis H.-G.: Acoustic of sound propagation in granular materials in one, two, and three dimensions. J. Phys. Soc. Japan 77, 034606 (2008)CrossRefADSGoogle Scholar
  32. 32.
    McNamara S., Herrmann H.J.: Quasirigidity: some uniqueness issues. Phys. Rev. E 74, 061303 (2006)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Adjemian F., Evesque P.: Experimental study of stick-slip behaviour. Int. J. Numer. Anal. Mech. Geomech. 28, 501 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Computerphysik, Universität StuttgartStuttgartGermany
  2. 2.Institut de Physique de Rennes, Université de Rennes 1Rennes cedexFrance

Personalised recommendations