Granular Matter

, Volume 13, Issue 1, pp 79–92 | Cite as

Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling

  • Juan Carlos Cante
  • M. Dolores Riera
  • Juan Oliver
  • Jose Manuel Prado
  • Alvaro Isturiz
  • C. Gonzalez
Original Paper


Experimental and numerical studies of powder flow during the die filling stage in powder metallurgy cold compaction processes are presented. An experimental setting consisting of a horizontal pneumatically activated shoe, a vertical die and high-speed video system has been designed. The experiments show the existence of three flow regimes: continuous, transitory and discrete, which are identified in terms of the particle size, the morphology and the speed of the shoe. In the continuous regime the powder flows in a progressive manner but in the discrete one some perturbations appear as a consequence of a shear band formation that forms discrete avalanches. A numerical model, based on a rate-dependent constitutive model, via a flow formulation, and in the framework of the particle finite element method (PFEM) is also proposed. For the purpose of this study, the use of the PFEM assumes that the powder can be modelled as a continuous medium. The model, provided with the corresponding characterisation of the parameters, is able to capture the two fundamental phenomena observed during the filling process: (1) the irreversibility of most of the deformation experienced by the material and (2) the quick dissipation of the potential gravitatory energy of the granular system through the inter-particle friction processes, modelled by the plastic dissipation associated with the material model. Experimental and numerical results have been compared in order to study the viability of the proposed model.


Flow regime Die filling Shear bands Granular materials Particle finite element method Flow formulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, P.: Introduction to molecular dynamics simulation. In: Attig, N., Binder, K., Grubmüller, H., Kurt, K. (eds.) Computational Soft Matter: From Synthetic Polymers to Proteins. John von Neumann Ins. for Comp., Jülich, NIC Series, vol. 23, pp. 1–28. ISBN 3-00-012641-4 (2004)Google Scholar
  2. 2.
    Bardet J.P., Proubet J.: Shear band analysis in idealized granular materials. J. Eng. Mech. 118, 397 (1992)CrossRefGoogle Scholar
  3. 3.
    Barker G.C., Mehta A., Grimson M.J.: Comment on three-dimensional model for particle size segregation by haking Phys. Rev. Lett. 70, 2194 (1993)CrossRefADSGoogle Scholar
  4. 4.
    Baxter G.W., Behringer R.P.: Cellular automata models of granular flow. Phys. Rev. A 42, 1017 (1990)CrossRefADSGoogle Scholar
  5. 5.
    Baxter G.W., Behringer R.P.: Cellular automata models for the flow of granular materials. Phys. D 51, 465 (1991)MATHCrossRefGoogle Scholar
  6. 6.
    Beverloo W.A., Leniger H.A., Van De Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)CrossRefGoogle Scholar
  7. 7.
    Belytschko T., Liu Y., Gu L.: Element free galerkin methods. Int. J. Num. Methods Eng. 37, 229–256 (1994)MATHCrossRefGoogle Scholar
  8. 8.
    Brekelmans W.A.M., Janssen J.D., Van De Ven A.A.F.: An eulerian approach for die compaction processes. Int. J. Num. Methods Eng. 31, 509–524 (1991)MATHCrossRefGoogle Scholar
  9. 9.
    Calvo N., Idelsohn S.R., Onate E.: The extended delaunany tessellation. Eng. Comput. 20, 583–600 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Cante J.C., Oliver J., Gonzalez C., Calero J.A., Benítez F.: On the numerical simulation of powder compaction processes: powder transfer modelling and characterization. Powder Metall. 48(1), 85–92 (2005)CrossRefGoogle Scholar
  11. 11.
    Cante, J.C., Oliver, J., Weyler, R., Hernandez, J.: Numerical Modelling of Granular Material Flow by the Particle Finite Element Method (In preparation)Google Scholar
  12. 12.
    Caram H., Hong D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828 (1991)CrossRefADSGoogle Scholar
  13. 13.
    Caram H., Hong D.C.: Diffusing void model for granular flow. Mod. Phys. Lett. B 6, 761 (1992)CrossRefADSGoogle Scholar
  14. 14.
    Coube O., Cocks A.C.F., Wu C.-Y.: Experimental and numerical study of die filling, powder transfer and die compaction. Powder Metall. 48(1), 68–76 (2005)CrossRefGoogle Scholar
  15. 15.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  16. 16.
    De S., Bathe K.J.: The method of finite spheres with improved numerical integration. Comput. Struct. 79, 2183–2196 (2001)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Gethin D.T, Tran D.V., Lewis R.W., Ariffin A.K.: An investigation of powder compaction processes. Int. J. Powder Metall. 30, 385–398 (1994)Google Scholar
  18. 18.
    Goon, G.Y., Poluchin, P.I., Poluchin, W.P., Prudcowsky, B.A.: The plastic deformation of metals. Metallurgica (in Russian, 1968)Google Scholar
  19. 19.
    Haggblad H.A., Oldenburg M.: Modelling and simulation of metal powder die pressing with use of explicit time integration. Model. Simul. Muter. Sci. Eng. 2, 893–911 (1994)CrossRefADSGoogle Scholar
  20. 20.
    Herrmann H.J.: Structures in deformed granular packings. Granul. Matter 3, 15–18 (2001)CrossRefGoogle Scholar
  21. 21.
    Hjortsberg E., Bergquist B.: Filling induced density variations in metal powder. Powder Metall. 45(2), 146–153 (2002)CrossRefGoogle Scholar
  22. 22.
    Idelsohn S.R., Onate E., Del Pin F.: A lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput. Struct. 81, 655–671 (2003)CrossRefGoogle Scholar
  23. 23.
    Idelsohn S.R., Oñate E., Del Pin F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Num. Methods Eng. 61, 964–989 (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Istúriz, A.: Estudio experimental del llenado de moldes pulvimetalúrgicos. PhD thesis (2006)Google Scholar
  25. 25.
    Isturiz A., Riera M.D., Prado J.M.: Experimental study of die filling in powder metallurgy. Rev. Metal. Madr. Extr, 181–186 (2005)Google Scholar
  26. 26.
    Jinka, A.G., Lewis, R.W., Gethin, D.T.: Finite element simulation of powder compaction via the flow formulation. In: Proceedings of the 1992 Powder Metallurgy World Congress, p2 (92-V2), pp. 123–144Google Scholar
  27. 27.
    Kaye B.H.: Powder Mixing, Powder Technology Series. Chapman & Hall, London (1997)Google Scholar
  28. 28.
    Khoei A.R., Lewis R.W.: Adaptive finite remeshing in a large deformation analysis of metal powder forming. Int. J. Num. Methods Eng. 45, 801–820 (1999)MATHCrossRefGoogle Scholar
  29. 29.
    Lewis R.W., Khoei A.R.: Numerical modelling of large deformation in metal powder forming. Cornput. Meth. Appl. Mech. Eng. 159, 291–328 (1998)MATHCrossRefGoogle Scholar
  30. 30.
    Lubliner J.: Plasticity Theory. Macmillan Publishing, New York (1990)MATHGoogle Scholar
  31. 31.
    Luding S.: Molecular dynamics simulations of granular materials. In: Hinrichsen, H., Wolf, D. (eds) The Physics of Granular Media, pp. 299–324. Wiley, Weinheim (2004) (ISBN 3-527-40373-6)Google Scholar
  32. 32.
    Meakin P., Jullien R.: Simple models for two and three dimensional particle size segregation. Phys. A 180, 1 (1992)CrossRefADSGoogle Scholar
  33. 33.
    Modnet P.M.: Comparison of computer representing powder compaction process: state of the art review. Computer Model. Group Powder Metall. 42(4), 301–311 (1999)Google Scholar
  34. 34.
    Modnet P.M.: Numerical simulation of powder compaction for two multilevel ferrous parts, including powder characterization and experimental validation. Res. Group Powder Metall. 45, 335–344 (2002)CrossRefGoogle Scholar
  35. 35.
    Oliver J., Oller S., Cante J.C.: A plasticity model for simulation of industrial powder compaction processes. Int. J. Solids Struct 33, 3161–3178 (1996)MATHCrossRefGoogle Scholar
  36. 36.
    Oñate E., Idelsohn S.R., Zienkiewicz O.C., Taylor R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Num. Methods Eng. 39(22), 3839–3886 (1996a)MATHCrossRefGoogle Scholar
  37. 37.
    Rajchenbach J.: Flow in powders: from discrete avalanches regime to continuous regime. Phys. Rev. Lett. 65, 2221–2225 (1990)CrossRefADSGoogle Scholar
  38. 38.
    Ristow, G.H.: Flow properties of granular materials in three-dimensional geometries. PhD Thesis. Philipps-Universität Marburg (1998)Google Scholar
  39. 39.
    Rosato A.D., Prinz F., Strandburg K., Swendsen R.: Monte carlo simulation of particulate matter segregation. Powder Technol. 49, 59 (1986)CrossRefGoogle Scholar
  40. 40.
    Rosato A.D., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil Nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038 (1987)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Rudnicki J.W., Rice J.R.: Conditions for localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371 (1975)CrossRefADSGoogle Scholar
  42. 42.
    Schneider L.C.R., Cocks A.C.F., Apostolopoulos A.: Comparison of filling behaviour of metallic, ceramic, hardmetal and magnetic powders. Powder Metall. 48(1), 77–84 (2005)CrossRefGoogle Scholar
  43. 43.
    Schneider, L.C.R., Cocks, A.C.F.: Development and test results of a low pressure instrumented die. (to appear in Powder Metallurgy)Google Scholar
  44. 44.
    Van-Burkalow A.: Angle of repose and angle of sliding friction: an experimental study. Bull. Geol. Soc. Am. 56, 669 (1945)CrossRefGoogle Scholar
  45. 45.
    Weber G.G., Brown S.: Simulation of the Compaction of Powder Components, Advances in Powder Metallurgy, pp. 08540. MPIF/APMI, Princeton (1989)Google Scholar
  46. 46.
    Wu C.-Y., Cocks A.C.F., Gillia O.T.: Experimental and numerical investigations of die filling and powder transfer. Adv. Powder Metall. Part. Mater. 4, 258–272 (2002)Google Scholar
  47. 47.
    Wu C.-Y., Cocks A.C.F., Gillia O.T., Thompson D.A.: Exp. num. Investig. Powder Transf. Powder Technol. 138, 216–228 (2003)CrossRefGoogle Scholar
  48. 48.
    Wu C.-Y, Cocks A.C.F.: Flow behaviour of powders during die filling. Powder Metall. 47(2), 127–136 (2004)CrossRefGoogle Scholar
  49. 49.
    Zenger D.C., Cai H.H.: Handbook of: the Common Cracks in P/M Compacts. Metal Powder Industries Federation, NJ (1997)Google Scholar
  50. 50.
    Zienkiewicz O.C., Godbole P.N.: Flow of plastic and visco-plastic solids with special referente to extrusion and forming processes. Int. J. Num. Methods Eng. 8, 3–16 (1974)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Juan Carlos Cante
    • 1
  • M. Dolores Riera
    • 2
  • Juan Oliver
    • 3
  • Jose Manuel Prado
    • 2
  • Alvaro Isturiz
    • 2
  • C. Gonzalez
    • 3
  1. 1.E.T.S. d’Enginyeries Industrial i Aeronàutica de TerrassaTechnical University of CataloniaTerrassaSpain
  2. 2.Department Ciencia de los Materiales e Ingenieria MetalúrgicaTechnical University of CataloniaBarcelonaSpain
  3. 3.E.T.S. d’Enginyers de Camins, Canals i PortsTechnical University of CataloniaBarcelonaSpain

Personalised recommendations