Granular Matter

, Volume 12, Issue 5, pp 459–467 | Cite as

A method to model realistic particle shape and inertia in DEM



A simple and fast original method to create irregular particle shapes for the discrete element method using overlapping spheres is described. The effects of its parameters on the resolution of the particle shape are discussed. Overlapping spheres induce a non-uniform density inside the particle leading to incorrect moments of inertia and therefore rotational behaviour. A simple method to reduce the error in the principal moments of inertia which acts on the individual densities of the spheres is also described. The pertinence of the density correction is illustrated by the case of free falling ballast particles forming a heap on a flat surface. In addition to improve behaviour, the correction reduces also computational time. The model is then used to analyse the interaction between ballast and geogrid by simulating pull-out tests. The pulling force results show that the model apprehends better the ballast geogrid interlocking than models with simple representation of the shape of the particles. It points out the importance of modelling accurately the shape of particles in discrete element simulations.


Discrete element modelling Shape Inertia Dynamics Ballast Geogrid 



Discrete element method


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  2. 2.
    Thomas P.A., Bray J.D.: Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenviron. Eng. 125, 169–178 (1999)CrossRefGoogle Scholar
  3. 3.
    Iwashita K., Oda M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998)CrossRefGoogle Scholar
  4. 4.
    Iwashita K., Oda M.: Micro-deformation mechanism of shear band process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)CrossRefGoogle Scholar
  5. 5.
    Jiang M.J., Yu H.-S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)CrossRefGoogle Scholar
  6. 6.
    Jiang M.J., Leroueil S., Zhu H-H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Int. J. Geomech. 9(1), 20–33 (2009)CrossRefGoogle Scholar
  7. 7.
    Williams J.R., Pentland A.P.: Superquadric and modal dynamics for discrete elements in interactive design. Eng. Comput. 9, 115–127 (1992)CrossRefGoogle Scholar
  8. 8.
    Lin X., Ng T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)Google Scholar
  9. 9.
    Mustoe G.G.W., Miyata M.: Material flow analyses of noncircular-shaped granular media using discrete element methods. J. Eng. Mech. 127(10), 1017–1026 (2001)CrossRefGoogle Scholar
  10. 10.
    Cleary P.W.: Large scale industrial DEM modelling. Eng. Comput. 21, 169–204 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Pournin L., Weber M., Tsukahara M., Ferrez J.-A., Ramaioli M., Liebling Th.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2-3), 119–126 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    Hart R., Cundall P.A., Lemos J.: Formulation of a three-dimensional dictinct element model – Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)Google Scholar
  13. 13.
    Abou-Chakra H., Baxter J., Tüzün U.: Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies. Adv. Powder Technol. 15(1), 63–77 (2004)CrossRefGoogle Scholar
  14. 14.
    Lee Y., Fang C., Tsou Y.-R., Lu L.-S., Yang C.-T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11(5), 307–315 (2009)CrossRefGoogle Scholar
  15. 15.
    McDowell G.R., Harireche O.: Discrete element modelling of yielding and normal compression of sand. Géotechnique 52(4), 299–304 (2002)Google Scholar
  16. 16.
    Thornton C., Liu L.: How do particles break?. Powder Technol. 143(144), 110–116 (2004)Google Scholar
  17. 17.
    Wang L., Park J., Fu Y.: Representation of real particles for DEM simulation using X-ray tomography. Construct. Build. Mater. 21, 338–346 (2007)CrossRefGoogle Scholar
  18. 18.
    Lu M., McDowell G.R.: The importance of modelling ballast particle shape in DEM. Granul. Matter 9(1–2), 71–82 (2007)Google Scholar
  19. 19.
    Matsushima, T., Saomoto, H., Matsumoto, M, Toda, K., Yamada, Y.: Discrete element simulation of an assembly of irregularly-shaped grains: quantitative comparison with experiments. In: 16th ASCE Engineering Mechanics Conference, July 16–18, 2003 University of Washington, Seattle (2003)Google Scholar
  20. 20.
    Price, M., Murariu, V., Morrison, G.: Sphere clump generation and trajectory comparison for real particles. In: Discrete Element Methods 2007 Conference, 27–29 August 2007, Brisbane, Australia (2007)Google Scholar
  21. 21.
    Ferellec J.-F., McDowell G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008)CrossRefGoogle Scholar
  22. 22.
    Ferellec J.-F., McDowell G.R.: Modelling realistic shape and particle inertia in DEM. Géotechnique 60(3), 227–232 (2010)CrossRefGoogle Scholar
  23. 23.
    Selig E.T., Walters J.M.: Track Geotechnology and Substructure Management. Thomas Telford, London (1993)Google Scholar
  24. 24.
    McDowell, G.R., Harireche, O., Konietzky, H., Brown, S.F., Thom, N.H.: Discrete element modelling of geogrid-reinforced aggregates. In: Proceedings ICE—Geotechnical Engineering, 159 (GE1), pp. 35-48 (2006)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nottingham Centre for Geomechanics, Department of Civil EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations