Granular Matter

, Volume 13, Issue 2, pp 149–158 | Cite as

Discrete element modelling of grain flow in a planar silo: influence of simulation parameters

  • C. González-Montellano
  • F. Ayuga
  • J. Y. Ooi


There is extensive engineering literature concerning the prediction of pressure and flow in a silo. The great majority of them are based on continuum theories. The friction between the stored material and the silo wall as well as the inclination of the hopper at its base are considered to be the most influential parameters for the flow pattern within the silo. In this paper, the filling and discharge of a planar silo with a hopper at its base has been modelled using DEM. The aim is to investigate the influence of DEM model parameters on the predicted flow pattern in the silo. The parametric investigation particularly focused on the hopper angle of inclination and the contact friction between particles and walls. The shape of the particles was also considered by comparing spherical and non-spherical particles, thus providing an insight into how particle interlocking might influence solids flow behaviour in silos. The DEM computations were analysed to evaluate the velocity profiles at different levels as well as the wall pressure distribution at different stages during filling and discharge. A detailed comparison reveals several key observations including the importance of particle interlocking to predict a flow pattern that is similar to the ones observed in real silos.


Discrete element method Granular flow Silo design Mass flow Funnel fow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EN 1991–4.: Actions on structures. Silos and tanks (2006)Google Scholar
  2. 2.
    Ketterhagen W.R., Curtis J.S., Wassgren C.R., Hancock B.C.: Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 195(1), 1–10 (2009)CrossRefGoogle Scholar
  3. 3.
    Rotter J.M.: Guide for the economic design of circular metal silos. Spon, London (2001)CrossRefGoogle Scholar
  4. 4.
    Jenike A.W.: Bulletin 108: Gravity flow of bulk solids. Salt Lake City, UT (1961)Google Scholar
  5. 5.
    Jenike A.W.: Bulletin 123: Storage and flow of solids. Salt Lake City, UT (1964)Google Scholar
  6. 6.
    Janssen H.A.: Versuch über Getreidedruck in Silozallen. Z des vereines Deutscher Ingenieure 39(35), 1045–1049 (1895)Google Scholar
  7. 7.
    Reimbert A, Reimbert M.: Silos théorie et pratique. Editions Eyrolles, France (1959)Google Scholar
  8. 8.
    Tejchman J., Klisinski M.: FE-studies on rapid flow of bulk solids in silos. Granul. Matter 3(4), 215–230 (2001)CrossRefGoogle Scholar
  9. 9.
    Vidal P., Gallego E., Guaita M., Ayuga F.: Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper. J. Constr. Steel Res. 64(4), 480–492 (2008)CrossRefGoogle Scholar
  10. 10.
    Vidal P., Guaita M., Ayuga F.: Discharge from cylindrical slender steel silos: finite element simulation and comparison with Eurocode 1. T. ASABE. 48(6), 2315–2321 (2005)Google Scholar
  11. 11.
    Chen J.F., Yu S.K., Ooi J.Y., Rotter J.M.: Finite element modelling of filling pressures in a full–scale silo. J. Eng. Mech-ASCE 127(10), 1058–1066 (2001)CrossRefGoogle Scholar
  12. 12.
    Ooi J.Y., Pham L., Rotter J.M.: Sistematic and random features of measured pressures on full-scale silo walls. Eng. Struct. 12, 74–87 (1990)CrossRefGoogle Scholar
  13. 13.
    Ramirez A., Nielsen J., Ayuga F.: On the use of plate-type normal pressure cells in silos. Part 2: validation for pressure measurements. Comput. Electron. Agr. 71(1), 64–70 (2010)CrossRefGoogle Scholar
  14. 14.
    Härtl J., Ooi J.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter 10(4), 263–271 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Chung Y.C., Ooi J.Y.: Influence of discrete element model parameters on bulk behavior of a granular solid under confined compression. Particul. Sci. Technol. 26(1), 83–96 (2008)CrossRefGoogle Scholar
  16. 16.
    Cundal P., Strack O.: A discrete numerical model for granular assemblies. Geotechnique 29(2), 47–65 (1979)Google Scholar
  17. 17.
    Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)CrossRefGoogle Scholar
  18. 18.
    Anand A., Curtis J.S., Wassgren C.R., Hancock B.C., Ketterhagen W.R.: Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chem. Eng. Sci. 63(24), 5821–5830 (2008)CrossRefGoogle Scholar
  19. 19.
    Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of the collision properties of small spheres. Phys. Fluids 6(3), 1108 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Lorenz A., Tuozzolo C., Louge M.: Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 37(3), 292–298 (1997)CrossRefGoogle Scholar
  21. 21.
    Johanson J.R., Jenike A.W.: Bulletin 116: Stress and velocity fields in gravity flow of bulk solids. Salt Lake City, UT (1962)Google Scholar
  22. 22.
    Härtl J., Ooi J., Rotter J., Wojcik M., Ding S., Enstad G.: The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chem. Eng. Res. Des. 86(4), 370–378 (2008)CrossRefGoogle Scholar
  23. 23.
    Zhong Z., Ooi J.Y., Rotter J.M.: The sensitivity of silo flow and wall pressures to filling method. Eng. Struct. 23, 756–767 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.BIPREE research group. ETSI AgrónomosUniversidad Politécnica de MadridMadridSpain
  2. 2.Institute for Infrastructure and EnvironmentUniversity of EdinburghEdinburghUK

Personalised recommendations