Granular Matter

, Volume 13, Issue 2, pp 175–181 | Cite as

DEM simulation of particle attrition in dilute-phase pneumatic conveying



Three dimensional numerical simulations of particles motion in a given geometry pneumatic conveying system are conducted in order to obtain a better understanding of the attrition process. A new and innovative procedure of implementing empirical comminution functions (Kalman et al. in Gran Mat 11:253–266, 2009) into DEM-CFD simulations was used and modified. The comminution functions include: initial strength distribution, selection function, breakage function, equivalence function and fatigue function. The implementation involves converting the probability comminution functions into individual particle properties by a random method and then converting the velocity dependent comminution functions into strength-dependent ones. The predictions of the numerical simulations are used to analyze the flow field characteristics and the size reduction process.


DEM Pneumatic conveying Particle breakage Selection function Breakage function Fatigue function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalman H., Rodnianski V., Haim M.: A new method to implement comminution functions into DEM simulation of a size reduction system. Granul Matter 11, 253–266 (2009)CrossRefGoogle Scholar
  2. 2.
    Bell, T.A., Boxman, A., Jacobs, J.B.: Attrition of salt during pneumatic conveying. In: Proceedings of the 5th World Congress of Chemical Engineering, San Diego, USA, vol. V, AIChE, NY, pp. 238–243 (1996)Google Scholar
  3. 3.
    Kalman H., Goder D.: Design criteria for particle attrition. Adv. Powder Technol. 9, 153–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Kalman, H., Goder, D.: Pressure drop, wear and attrition various bends for pneumatic conveying pipelines. In: Proceedings of the 5th World Congress of Chemical Engineering, San Diego, USA, vol. VI, AIChE, NY, pp. 411–416 (1996)Google Scholar
  5. 5.
    Kalman H.: Particle breakage and attrition. Kona 18, 108–120 (2000)Google Scholar
  6. 6.
    Kalman H.: Attrition control by pneumatic conveying. Powder Technol. 104, 214–220 (1999)CrossRefGoogle Scholar
  7. 7.
    Kalman H.: Attrition of powders and granules at various bends during pneumatic conveying. Powder Technol. 112, 244–250 (2000)CrossRefGoogle Scholar
  8. 8.
    Salman, A.D., Gorham, D.A., Verba, A.: Particle movement in dilute pneumatic conveying. In: 1st International, Symposium on On-Line Flow Measurement of Particulate Solids, Greenwich, pp. 138–147 (1998)Google Scholar
  9. 9.
    Salman A.D., Hounslow M.J., Verba A.: Particle fragmentation in dilute phase pneumatic conveying. Powder Technol. 126, 109–115 (2002)CrossRefGoogle Scholar
  10. 10.
    Vervoorn, P.M.M., Scarlett, B.: The attrition behaviour of alumina extrudates in pneumatic transport and fluidized Beds. In: Proceedings of the Powder and Bulk Solids Conference, Chicago, USA, pp. 677– 687 (1987)Google Scholar
  11. 11.
    Coppinger E., Discepola L., Tardos G.I., Bellamy G.: The influence of granule morphology on attrition during fluidization and pneumatic transport. Adv. Powder Technol. 3, 201–218 (1992)CrossRefGoogle Scholar
  12. 12.
    Chapelle P., Abou-Chakra H., Christakis N., Patel M., Abu-Nahar A., Tüzün U., Cross M.: Computational model for prediction of particle degradation during dilute-phase pneumatic conveying: the use of a laboratory-scale degradation tester for the determination of degradation propensity. Adv. Powder Technol. 15, 13–29 (2004)CrossRefGoogle Scholar
  13. 13.
    Mills D.: Pneumatic Conveying Design Guide,Chap. 24. 2nd edn. Elsevier, Butterworth-Heinemann (2004)Google Scholar
  14. 14.
    Han T., Levy A., Kalman H.: DEM simulation of salt during dilute-phase pneumatic conveying. Powder Technol. 129, 92–100 (2003)CrossRefGoogle Scholar
  15. 15.
    Chapelle P., Abou-Chakra H., Christakis N., Bridle I., Patel M.K., Baxter J., Tuzun U., Cross M.: Numerical predictions of particle degradation in industrial-scale pneumatic conveyors. Powder Technol. 143–144, 321–330 (2004)CrossRefGoogle Scholar
  16. 16.
    Grof Z., Kohout M., Štepánek F.: Multi-scale simulation of needle-shaped particle breakage under uniaxial compaction. Chem. Eng. Sci. 62, 1418–1429 (2007)CrossRefGoogle Scholar
  17. 17.
    Rozenblat Y., Portnikov D., Kalman H., Aman S., Tomas J.: Strength of particles under compression. CHoPS 2009. Brisbane, Australia (2009)Google Scholar
  18. 18.
    Rozenblat, Y.: Investigating size reduction functions for DEM applications. Ph.D. Thesis, Ben-Gurion University of the Negev (2010)Google Scholar
  19. 19.
    Shih H., Liou W.W., Shabbir A., Yang Z., Zhu J.: A new K-\({\varepsilon}\) eddy-viscosity model for high Reynolds number turbulent flows—model development and validation. Comput. Fluids 24, 227–238 (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Brosh T., Batat Y., Kalman H., Levy A., Brown A.B.: Particle motion and classification in a jet mill. Bulk Solids & Powder Sci. & Technol. 3, 83–88 (2008)Google Scholar
  21. 21.
    Brosh, T., Levy A.: Modelling of heat transfer in pneumatic conveyer using a combined DEM-CFD numerical code, Drying Technol., to be published (2010)Google Scholar
  22. 22.
    Han T., Petukhov Y., Levy A., Kalman H.: Theoretical and experimental study of multi-impact breakage of particles. Adv. Powder Technol. 17, 135–157 (2006)CrossRefGoogle Scholar
  23. 23.
    Han T., Kalman H., Levy A.: Theoretical and experimental study on multi-compression particle breakage. Adv. Powder Technol. 14, 605–620 (2003)CrossRefGoogle Scholar
  24. 24.
    Vogel L., Peukert W.: Characterisation of grinding-relevant particle properties by inverting of a population balance model, Part. Part. Syst. Character. 19, 149–157 (2002)CrossRefGoogle Scholar
  25. 25.
    Petukhov Y., Kalman H.: Empirical breakage ratio of particles due to impact. Powder Technol. 143–144, 160–169 (2004)CrossRefGoogle Scholar
  26. 26.
    Kalman H., Hubert M., Grant E., Petukhov Y., Haim M.: Fatigue behavior of impact comminution and attrition units. Powder Technol. 146, 1–9 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations