Granular Matter

, Volume 11, Issue 4, pp 209–220 | Cite as

Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment

  • Harald TeufelsbauerEmail author
  • Y. Wang
  • M. -C. Chiou
  • W. Wu


This paper investigates the interaction between rapid granular flow and an obstacle. The distinct element method (DEM) is used to simulate the flow regimes observed in laboratory experiments. The relationship between the particle properties and the overall flow behaviour is obtained by using the DEM with a simple linear contact model. The flow regime is primarily controlled by the particle friction, viscous normal damping and particle rotation rather than the contact stiffness. Rolling constriction is introduced to account for dispersive flow. The velocity depth-profiles around the obstacles are not uniform but varying over the depth. The numerical results are compared with laboratory experiments of chute flow with dry granular material. Some important model parameters are obtained, which can be used to optimize defense structures in alpine regions.


Granular material Avalanche flow Avalanche defense structures Chute flow Flow–obstacle interaction Numerical simulation Distinct element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barpi F., Borri-Brunetto M., Delli Veneri L.: Cellular-automata model for dense-snow avalanches. J. Cold Reg. Eng. 21, 121–140 (2007)CrossRefGoogle Scholar
  2. 2.
    Bharadwaj R., Wassgren C., Zenit R.: The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys. Fluids 16, 1511–1517 (2006)Google Scholar
  3. 3.
    Cantero, M.I., García, M.H., Balachandar, S.: Effect of particle inertia on the dynamics of depositional particulate density currents. Comput. Geosci. (2008, accepted)Google Scholar
  4. 4.
    Cundall P.A., Strack O.D.L.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  5. 5.
    Cundall P.A.: Formulation of a three-dimensional Distinct Element Model. Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)Google Scholar
  6. 6.
    Chehata D., Zenit R., Wassgren C.R.: Dense granular flow around an immersed cylinder. Phys. Fluids 15, 1622–1631 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Chiou M.C., Wang Y., Hutter K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chiou, M.C.: Modelling dry granular avalanches past different obstructs: numerical simulations and laboratory analyses, Dissertation. Technical University Darmstadt, Germany (2005)Google Scholar
  9. 9.
    Feda, J.: Mechanics of particulate materials. Elsevier, Amsterdam. ISBN: 978-0444997135 (1982)Google Scholar
  10. 10.
    Gray J.M.N.T., Wieland M., Hutter K.: Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. A Math. Phys. Eng. Sci. 455, 1841–1874 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gray J.M.N.T., Tai Y.-C., Noelle S.: Shock waves, dead-zones and particle-free regions in rapid granular free surface flows. J. Fluid Mech. 491, 161–181 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Gray J.M.N.T., Cui X.: Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows. J. Fluid Mech. 579, 113–136 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Tómasson G.G.: A laboratory study of the retarding effects of braking mounds on snow avalanches. J. Glaciol. 49(165), 191–200 (2003)CrossRefGoogle Scholar
  14. 14.
    Hákonardóttir K.M., Hogg A.J., Jóhannesson T., Kern M., Tiefenbacher F.: Large-scale avalanche breaking mound and catching dam experiments with snow: a study of the airborne jet. Surv. Geophys. 24, 543–554 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Hákonardóttir, K.M.: The interaction between snow avalanches and dams. PhD thesis, University of Bristol, School of Mathematics (2004)Google Scholar
  16. 16.
    Hákonardóttir, K.M., Hogg, A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101 (2005). doi: 10.1063/1.1950688 Google Scholar
  17. 17.
    Hanes D.M., Walton O.R.: Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133–144 (2000)CrossRefGoogle Scholar
  18. 18.
    Harbitz, C.B., Domaas, U., Engen, A.: Design of snow avalanche deflecting dams. Oslo, NGI, Report 589000-4. Also in: Proceedings of the 9th Interpraevent 2000 Congress, 26th–30th June 2000, Villach, Austria, vol. 1, pp. 383–396, 41 (2000)Google Scholar
  19. 19.
    Heaney, P.J., Prewitt, C.T., Gibbs, G.V.: Silica: physical behavior, geochemistry and materials applications. Rev. Mineral., vol. 29Google Scholar
  20. 20.
    Hungr, O., McClung, D.M.: An equation for calculating snow avalanche runup against barriers. Avalanche formation, movement and effects. In: Proceedings of the Davos Symposium, September 1986, vol. 162, pp. 605–612. IAHS Publ. (1987)Google Scholar
  21. 21.
    Hutter K., Wang Y., Pudasaini S.P.: The Savage–Hutter avalanche model: how far can it be pushed?. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1507–1528 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Itasca Consulting Group, Inc: PFC3D (Particle Flow Code in 3D) Theory and Background Manual, Version 3.0. ICG, Minneapolis (2003)Google Scholar
  23. 23.
    Jóhannesson T.: Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland. Ann. Glaciol. 32, 350–354 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Khan K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A 352, 522–524 (2005)CrossRefGoogle Scholar
  25. 25.
    Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S., Scherer V.: Review and extension of normal force models for the Discrete Element Method. Powder Technol. 171, 157–173 (2007)CrossRefGoogle Scholar
  26. 26.
    Lehning M., Doorschot J., Bartelt P.: A snowdrift index based on SNOWPACK model calculations. Ann. Glaciol. 31, 382–386 (2000)CrossRefADSGoogle Scholar
  27. 27.
    Li S., Yao Q., Chen B., Zhang X., Ding Y.L.: Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chin. Sci. Bull. 52(5), 692–700 (2007)CrossRefGoogle Scholar
  28. 28.
    McClung, D., Schaerer, P.: The Avalanche Handbook. The Mountaineers, Seattle (1993)Google Scholar
  29. 29.
    McElwaine J., Nishimura K.: Ping-pong ball avalanche experiments. Ann. Glaciol. 32, 241–250 (2001)CrossRefADSGoogle Scholar
  30. 30.
    Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Moriguchi S., Borja R.I., Yashima A., Sawada K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4, 57–71 (2009)CrossRefGoogle Scholar
  32. 32.
    Nicot F.: Constitutive modelling of snow as a cohesive-granular material. Granul. Matter 6, 47–60 (2004)zbMATHCrossRefGoogle Scholar
  33. 33.
    Oñate E., Celigueta M.A., Idelsohn S.R.: Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotech. 1, 237–252 (2007)CrossRefGoogle Scholar
  34. 34.
    Peña A.A., García-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)CrossRefGoogle Scholar
  35. 35.
    Pitman E.B., Long L.E.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 1573–1601 (2005)zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Pudasaini S.P., Hutter K.: Rapid Shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Pudasaini, S.P., Hsiau, S., Wang, Y., Hutter, K.: Velocity measurements in dry granular avalanches using Particle Image Velocimetry-Technique and comparison with theoretical predictions. Phys. Fluids 17(9) (2005)Google Scholar
  38. 38.
    Pudasaini, S.P., Hutter, K., Hsiau, S., Tai, S., Wang, Y., Katzenbach, R.: Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Phys. Fluids 19(5) (2007)Google Scholar
  39. 39.
    Pudasaini, S.P., Wang, Y., Sheng, L., Hsiau, S., Hutter, K., Katzenbach, R.: Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys. Fluids 20(7) (2008)Google Scholar
  40. 40.
    Pudasaini S.P., Hutter K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)Google Scholar
  41. 41.
    Sailer R., Fellin W., Fromm R., Jor̈g P., Rammer L., Sampl P., Schaffhauser A.: Snow avalanche mass-balance calculation and simulation-model verification. Ann. Glaciol. 48, 183–192 (2008)CrossRefADSGoogle Scholar
  42. 42.
    Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Schwager T., Pöschel T.: Coefficient of restitution and linear–dashpot model revisited. Granul. Matter 9, 465–469 (2007)CrossRefGoogle Scholar
  44. 44.
    Schwager, T., Pöschel, T.: Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. arXiv:07081434 (2007)Google Scholar
  45. 45.
    Stevens A.B., Hrenya C.M.: Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 154, 99–109 (2005)CrossRefGoogle Scholar
  46. 46.
    White J.A., Borja R., Fredrich J.T.: Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations. Acta Geotech. 1, 195–209 (2006)CrossRefGoogle Scholar
  47. 47.
    Wu C., Li L., Thornton C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003)CrossRefGoogle Scholar
  48. 48.
    Zhang J., Hu Z., Ge W., Zhang Y., Li T., Li J.: Application of the discrete approach to the simulation of size segregation in granular chute flow. Ind. Eng. Chem. Res. 43, 5521–5528 (2004)CrossRefGoogle Scholar
  49. 49.
    Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)CrossRefGoogle Scholar
  50. 50.
    Zhou Y.C., Xu B.H., Yu A.B., Zulli P.: An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125, 45–54 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Harald Teufelsbauer
    • 1
    Email author
  • Y. Wang
    • 1
    • 2
  • M. -C. Chiou
    • 2
  • W. Wu
    • 1
  1. 1.Institute of Geotechnical EngineeringUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations