Granular Matter

, 11:139 | Cite as

Granular solid hydrodynamics

  • Yimin Jiang
  • Mario LiuEmail author
Open Access


A complete continuum mechanical theory for granular media, including explicit expressions for the energy current and the entropy production, is derived and explained. Its underlying notion is: granular media are elastic when at rest, but turn transiently elastic when the grains are agitated—such as by tapping or shearing. The theory includes the true temperature as a variable, and employs in addition a granular temperature to quantify the extent of agitation. A free energy expression is provided that contains the full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. We refer to the theory as GSH, for granular solid hydrodynamics. In the static limit, it reduces to granular elasticity, shown previously to yield realistic static stress distributions. For steady-state deformations, it is equivalent to hypoplasticity, a state-of-the-art engineering model.


Entropy Granular Material Void Ratio Entropy Production Density Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259 (1996)CrossRefADSGoogle Scholar
  2. 2.
    Liu A.J., Nagel S.R.: Jamming is not just cool any more. Nature 396, 21 (1998)CrossRefADSGoogle Scholar
  3. 3.
    de Gennes P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71(2), 347 (1999)Google Scholar
  4. 4.
    Kadanoff L.P.: Built upon sand: theoretical ideas inspired by the flow of granular materials. Rev. Mod. Phys. 71(1), 435 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Haff P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Jenkins J.T., Savage S.B.: A theory for the rapid flow of identical, smooth, nearly elastic particles. J. Fluid Mech. 130, 187 (1983)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Campbell C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57 (1990)CrossRefADSGoogle Scholar
  8. 8.
    Herrmann, H.J.,Hovi, J.-P., Luding, S. (eds.): Physics of DryGranular Media. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  9. 9.
    Goldhirsch I.: Scales and kinetics of granular flows. Chaos 9, 659 (1999)zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Mehte A.: Granular Physics. Cambridge University Press, Cambridge (2007)Google Scholar
  11. 11.
    Silbert L.E., Ertas D., Grest G.S., Halsey T.C., Levine D., Plimpton S.J.: Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)CrossRefADSGoogle Scholar
  12. 12.
    MiDi G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  13. 13.
    Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Alonso-Marroquin F., Herrmann H.J.: Calculation of the incremental stress-strain relation of a polygonal packing. Phys. Rev. E 66, 021301 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Alonso-Marroquin F., Herrmann H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92, 054301 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Garcia-Rojo R., Alonso-Marroquin F., Herrmann H.J.: Characterization of the material response in granular ratcheting. Phys. Rev. E 72, 041302 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Nedderman R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)Google Scholar
  18. 18.
    Schofield A., Wroth P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)Google Scholar
  19. 19.
    Huang, W.X. (eds): Engineering Properties of Soil, 1st edn. Hydroelectricity Publishing, Beijing (1983)Google Scholar
  20. 20.
    Kolymbas D.: Introduction to Hypoplasticity. Balkema, Rotterdam (2000)Google Scholar
  21. 21.
    Kolymbas, D., Wu, W., Kolymbas, D.: In: Kolymbas, D. (ed.) Constitutive Modelling of Granular Materials. Springer, Berlin (2000), and references thereinGoogle Scholar
  22. 22.
    Truesdell C., Noll W.: The Nonlinear Field Theories of Mechanics, Handbuch der Physik III/c. Springer, Berlin (1965)Google Scholar
  23. 23.
    Truesdell C.: Continuum Mechanics, vol 1. and 2. Gordon and Breach, New York (1965)Google Scholar
  24. 24.
    Liu I.-S.: Continuum Mchanics. Springer, Berlin (2002)Google Scholar
  25. 25.
    Landau L.D., Lifshitz E.M.: Fluid Mechanics. Butterworth-Heinemann, Oxford (1987)zbMATHGoogle Scholar
  26. 26.
    Landau L.D., Lifshitz E.M.: Theory of Elasticity. Butterworth-Heinemann, Oxford (1986)Google Scholar
  27. 27.
    Khalatnikov I.M.: Introduction to the Theory of Superfuidity. Benjamin, New York (1965)Google Scholar
  28. 28.
    de Groot S.R., Masur P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)Google Scholar
  29. 29.
    Forster D.: Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions. Benjamin, New York (1975)Google Scholar
  30. 30.
    de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)Google Scholar
  31. 31.
    Martin P.C., Parodi O., Pershan P.S.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401 (1972)CrossRefADSGoogle Scholar
  32. 32.
    Lubensky T.C.: Hydrodynamics of cholesteric liquid crystals. Phys. Rev. A 6, 452 (1972)CrossRefADSGoogle Scholar
  33. 33.
    Liu M.: Hydrodynamic theory near the nematic Smectic-A transition. Phys. Rev. A 19, 2090 (1979)CrossRefADSGoogle Scholar
  34. 34.
    Liu M.: Hydrodynamic theory of biaxial nematics. Phys. Rev. A 24, 2720 (1981)CrossRefADSGoogle Scholar
  35. 35.
    Liu M.: Maxwell equations in nematic liquid crystals. Phys. Rev. E 50, 2925 (1994)CrossRefADSGoogle Scholar
  36. 36.
    Pleiner, H., Brand, H.R.: In: Buka, A., Kramer, L. (eds.) Pattern Formation in Liquid Crystals. Springer, New York (1996)Google Scholar
  37. 37.
    Graham R.: Hydrodynamics of 3He in Anisotropic A Phase. Phys. Rev. Lett. 33, 1431 (1974)CrossRefADSGoogle Scholar
  38. 38.
    Graham R., Pleiner H.: Spin hydrodynamics of 3He in the anisotropic A phase. Phys. Rev. Lett. 34, 792 (1975)CrossRefADSGoogle Scholar
  39. 39.
    Liu M.: Hydrodynamics of 3He near the A-transition. Phys. Rev. Lett. 35, 1577 (1975)CrossRefADSGoogle Scholar
  40. 40.
    Liu M., Cross M.C.: Broken spin-orbit symmetry in superfluid 3He and the B-phase dynamics. Phys. Rev. Lett. 41, 250 (1978)CrossRefADSGoogle Scholar
  41. 41.
    Liu M., Cross M.C.: Gauge Wheel of Superfluid 3He. Phys. Rev. Lett. 43, 296 (1979)CrossRefADSGoogle Scholar
  42. 42.
    Liu M.: Relative broken symmetry and the dynamics of the A 1-phase. Phys. Rev. Lett. 43, 1740 (1979)CrossRefADSGoogle Scholar
  43. 43.
    Liu M.: Rotating superconductors and the frame-independent London equations. Phys. Rev. Lett. 81, 3223 (1998)CrossRefADSGoogle Scholar
  44. 44.
    Jiang Y.M., Liu M.: Rotating superconductors and the London moment: thermodynamics versus microscopics. Phys. Rev. B 6, 184506 (2001)CrossRefADSGoogle Scholar
  45. 45.
    Liu M.: Superconducting hydrodynamics and the higgs analogy. J. Low Temp. Phys. 126, 911 (2002)CrossRefGoogle Scholar
  46. 46.
    Henjes K., Liu M.: Hydrodynamics of polarizable liquids. Ann. Phys. 223, 243 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Liu M.: Hydrodynamic theory of electromagnetic fields in continuous media. Phys. Rev. Lett. 70, 3580 (1993)CrossRefADSGoogle Scholar
  48. 48.
    Liu M.: Mario Liu replies. Phys. Rev. Lett. 74, 1884 (1995)CrossRefADSGoogle Scholar
  49. 49.
    Jiang Y.M., Liu M.: Dynamics of dispersive and nonlinear media. Phys. Rev. Lett. 77, 1043 (1996)CrossRefADSGoogle Scholar
  50. 50.
    Shliomis M.I.: Magnetic fluids. Sov. Phys. Usp. 17, 153 (1974)CrossRefADSGoogle Scholar
  51. 51.
    Rosensweig R.E.: Ferrohydrodynamics. Dover, New York (1997)Google Scholar
  52. 52.
    Liu M.: Fluiddynamics of colloidal magnetic and electric liquid. Phys. Rev. Lett. 74, 4535 (1995)CrossRefADSGoogle Scholar
  53. 53.
    Liu M.: Off-Equilibrium, static fields in dielectric ferrofluids. Phys. Rev. Lett. 80, 2937 (1998)CrossRefADSGoogle Scholar
  54. 54.
    Liu M.: Electromagnetic fields in ferrofluids. Phys. Rev. E 59, 3669 (1999)CrossRefADSGoogle Scholar
  55. 55.
    Müller H.W., Liu M.: Structure of ferro-fluiddynamics. Phys. Rev. E 64, 061405 (2001)CrossRefADSGoogle Scholar
  56. 56.
    Müller H.W., Liu M.: Shear excited sound in magnetic fluid. Phys. Rev. Lett. 89, 67201 (2002)CrossRefADSGoogle Scholar
  57. 57.
    Müller O., Hahn D., Liu M.: Non-Newtonian behaviour in ferrofluids and magnetization relaxation. J. Phys. Condens. Matter 18, 2623 (2006)CrossRefGoogle Scholar
  58. 58.
    Mahle S., Ilg P., Liu M.: Hydrodynamic theory of polydisperse chain-forming ferrofluids. Phys. Rev. E 77, 016305 (2008)CrossRefADSGoogle Scholar
  59. 59.
    Temmen H., Pleiner H., Liu M., Brand H.R.: Convective nonlinearity in non-newtonian fluids. Phys. Rev. Lett. 84, 3228 (2000)CrossRefADSGoogle Scholar
  60. 60.
    Temmen H., Pleiner H., Liu M., Brand H.R.: Temmen et al. reply. Phys. Rev. Lett. 86, 745 (2001)CrossRefADSGoogle Scholar
  61. 61.
    Pleiner H., Liu M., Brand H.R.: Nonlinear fluid dynamics description of non-newtonian fluids. Rheol. Acta 43, 502 (2004)CrossRefGoogle Scholar
  62. 62.
    Müller, O.: Die Hydrodynamische Theorie Polymerer Fluide. PhD Thesis, University of Tübingen (2006)Google Scholar
  63. 63.
    Jiang Y.M., Liu M.: Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91, 144301 (2003)CrossRefADSGoogle Scholar
  64. 64.
    Jiang Y.M., Liu M.: Energy instability unjams sand and suspension. Phys. Rev. Lett. 93, 148001 (2004)CrossRefADSGoogle Scholar
  65. 65.
    Jiang Y.M., Liu M.: A brief review of “granular elasticity”. Eur. Phys. J. E 22, 255 (2007)CrossRefMathSciNetGoogle Scholar
  66. 66.
    Krimer D.O., Pfitzner M., Bräuer K., Jiang Y., Liu M.: Granular elasticity: general considerations and the stress dip in sand piles. Phys. Rev. E 74, 061310 (2006)CrossRefADSGoogle Scholar
  67. 67.
    Bräuer K., Pfitzner M., Krimer D.O., Mayer M., Jiang Y., Liu M.: Granular elasticity: stress distributions in silos and under point loads. Phys. Rev. E 74, 061311 (2006)CrossRefADSGoogle Scholar
  68. 68.
    Jiang Y.M., Liu M.: From elasticity to hypoplasticity: dynamics of granular solids. Phys. Rev. Lett. 99, 105501 (2007)CrossRefADSGoogle Scholar
  69. 69.
    Ono I.K., O’Hern C.S., Durian D.J., Langer S.A., Liu A.J., Nagel S.R.: Effective temperatures of a driven system near jamming. Phys. Rev. Lett. 89, 095703 (2002)CrossRefADSGoogle Scholar
  70. 70.
    Kostädt P., Liu M.: Three ignored densities, frame-independent thermodynamics, and broken Galilean symmetry. Phys. Rev. E 58, 5535 (1998)CrossRefADSMathSciNetGoogle Scholar
  71. 71.
    Liu M.: Comment on “weakly and strongly consistent formu- lation of irreversible processes”. Phys. Rev. Lett. 100, 098901 (2008)CrossRefADSGoogle Scholar
  72. 72.
    Onoda G.Y., Liniger E.G.: Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727 (1990)CrossRefADSGoogle Scholar
  73. 73.
    Hardin B.O., Richart F.E.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. ASCE 89(SM1), 33–65 (1963)Google Scholar
  74. 74.
    Kuwano R., Jardine R.J.: On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Geotechnique 52, 727 (2002)CrossRefGoogle Scholar
  75. 75.
    Jiang Y.M., Liu M.: Incremental stress-strain relation from granular elasticity: comparison to experiments. Phys. Rev. E 77, 021306 (2008)CrossRefADSGoogle Scholar
  76. 76.
    Bocquet L., Errami J., Lubensky T.C.: Hydrodynamic Model for a dynamical jammed-to-flowing transition in gravity driven granular media. Phys. Rev. Lett. 89, 184301 (2002)CrossRefADSGoogle Scholar
  77. 77.
    Losert W., Bocquet L., Lubensky T.C., Gollub J.P.: Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428 (2000)CrossRefADSGoogle Scholar
  78. 78.
    Bocquet L., Losert W., Schalk D., Lubensky T.C., Gollub J.P.: Granular shear flow dynamics and forces: experiment and continuum theory. Phys. Rev. E 65, 011307 (2002)CrossRefADSGoogle Scholar
  79. 79.
    Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267 (2003)CrossRefADSMathSciNetGoogle Scholar
  80. 80.
    Johnson P.A., Jia X.: Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437/6, 871 (2005)CrossRefADSGoogle Scholar
  81. 81.
    Edwards S.F., Oakeshott R.B.S.: Theory of powders. Physica A 157, 1080 (1989)CrossRefADSMathSciNetGoogle Scholar
  82. 82.
    Edwards S.F., Grinev D.V.: Statistical mechanics of granular materials: stress propagation and distribution of contact forces. Granul. Matter 4, 147 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Theoretische PhysikUniversität TübingenTübingenGermany
  2. 2.Central South UniversityChangshaChina

Personalised recommendations