Granular Matter

, Volume 11, Issue 3, pp 185–191 | Cite as

Segregation and stability of a binary granular heap

  • A. G. Swartz
  • J. B. Kalmbach
  • J. Olson
  • R. J. Zieve
Open Access


We measure stability of two-dimensional granular mixtures in a rotating drum and relate grain configurations to stability. We use two types of grains which differ in both size and shape, with the larger grains reaching a larger average angle before an avalanche. In our mixtures, the smaller grains cluster near the center of the drum, while the larger grains remain near the outer edge, a pattern suggesting that grain size rather than avalanche angle determines the segregation behavior. One consequence of the size segregation is that the smaller grains heavily influence the stability of the heap. We find that the maximum angle of stability is a non-linear function of composition, changing particularly rapidly when small grains are first added to a homogeneous pile of large grains. We conclude that the grain configuration within the central portion of the heap plays a prominent role in stability.


Rotating drum Static sandpile Avalanches Segregation Grain shape 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Duran J.: Sands, Powders and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (2000)MATHGoogle Scholar
  2. 2.
    Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)CrossRefADSGoogle Scholar
  3. 3.
    Daniels K.E., Behringer R.P.: Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow. Phys. Rev. Lett. 94, 168001-1–168001-4 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Deboeuf S., Dauchot O., Staron L., Mangeney A., Vilotte J.-P.: Memory of the unjamming transition during cyclic tiltings of a granular pile. Phys. Rev. E 72, 051305-1–051305-11 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Liu C.-H.: Spatial patterns of sound propagation in sand. Phys. Rev. B 50, 782–794 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Ottino J.M., Khakhar D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Krishna R., Ellenberger J., Vandu C.O.: Vibration-induced granular segregation in a pseudo-2D column: the (reverse) Brazil nut effect. Powder Technol. 164, 168–173 (2006)CrossRefGoogle Scholar
  8. 8.
    Huerta D.A., Ruiz-Suarez J.C.: Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett. 92, 114301-1–114301-4 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Carrigy M.A.: Experiments on the angles of repose of granular materials. Sedimentology 14, 147–158 (1970)CrossRefGoogle Scholar
  10. 10.
    Hill K.M., Kakalios J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610–R3613 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Peratt B.A., Yorke J.A.: Continuous avalanche mixing of granular solids in a rotating drum. Europhys. Lett. 35, 31–35 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Hill K.M., Caprihan A., Kakalios J.: Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys. Rev. Lett. 78, 50–53 (1997)CrossRefADSGoogle Scholar
  13. 13.
    Choo K., Molteno T.C.A., Morris S.W.: Traveling granular segregation patterns in a long drum mixer. Phys. Rev. Lett. 79, 2975–2978 (1997)CrossRefADSGoogle Scholar
  14. 14.
    Lai P.-Y., Jia L.-C., Chan C.K.: Friction induced segregation of a granular binary mixture in a rotating drum. Phys. Rev. Lett. 79, 4994–4997 (1997)CrossRefADSGoogle Scholar
  15. 15.
    Ristow G.H., Nakagawa M.: Shape dynamics of interfacial front in rotating cylinders. Phys. Rev. E 59, 2044–2048 (1999)CrossRefADSGoogle Scholar
  16. 16.
    Prigozhin L., Kalman H.: Radial mixing and segregation of a binary mixture in a rotating drum: Model and experiment. Phys. Rev. E 57, 2073 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Yanagita T.: Three-dimensional cellular automaton model of segregation of granular materials in a rotating cylinder. Phys. Rev. Lett. 82, 3488–3491 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Puri S., Hayakawa H.: Segregation of granular mixtures in a rotating drum. Physica A 290, 218–242 (2001)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Newey M., Losert W.: Band-in-Band segregation of multidisperse granular mixtures. Europhys. Lett. 66, 205–211 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Kuo H.P., Hsu R.C., Hsiao Y.C.: Investigation of axial segregation in a rotating drum. Powder Technol. 153, 196–203 (2005)CrossRefGoogle Scholar
  21. 21.
    Liu X.Y., Specht E., Mellmann J.: Experimental study of the lower and upper angles of repose of granular material. Powder Technol. 154, 125–131 (2005)CrossRefGoogle Scholar
  22. 22.
    Taberlet, N., Newey, M., Richard, P., Losert, W.: On axial segregation in a tumbler: an experimental and numerical study. J. Stat. Mech. (2006). doi: 10.1088/1742-5468/2006/07/P07013
  23. 23.
    Makse H.A., Havlin S., King P.R., Stanley H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–381 (1997)CrossRefADSGoogle Scholar
  24. 24.
    Makse H.A., Ball R.C., Stanley H.E., Warr S.: Dynamics of granular stratification. Phys. Rev. E 58, 3357–3367 (1998)CrossRefADSGoogle Scholar
  25. 25.
    Koeppe J.P., Enz M., Kakalios J.: Phase diagram for avalanche stratification of granular media. Phys. Rev. E 58, R4104–R4107 (1998)CrossRefADSGoogle Scholar
  26. 26.
    Rankenburg I.C., Zieve R.J.: The influence of shape on ordering of granular systems in two dimensions. Phys. Rev. E 63, 06130-1–061303-9 (2001)CrossRefGoogle Scholar
  27. 27.
    Albert R., Albert I., Hornbaker D., Schiffer P., Barabási A.-L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56, R6271–R6274 (1997)CrossRefADSGoogle Scholar
  28. 28.
    Olson J., Priester M., Luo J., Chopra S., Zieve R.J.: Packing fractions and maximum angles of stability in granular materials. Phys. Rev. E 72, 031302-1–031302-5 (2005)CrossRefADSGoogle Scholar
  29. 29.
    Original images available at arXiv:0706.0774v1Google Scholar
  30. 30.
    Middleton G.V., Hampton M.A.: Marine sediment transport and environmental management, pp. 197–239. Wiley, New York (1976)Google Scholar
  31. 31.
    Brown R.L., Richard J.C.: Principles of Powder Mechanics, vol. 31. Pergamon, New York (1960)Google Scholar
  32. 32.
    Rajchenbach J.: Flow in powders: From discrete avalanches to continuous regime. Phys. Rev. Lett. 65, 2221–2224 (1990)CrossRefADSGoogle Scholar
  33. 33.
    Cantelaube F., Limon-Duparcmeur Y., Bideau D., Ristow G.H.: Geometrical analysis of avalanches in a 2D drum. J. Phys. (France) I 51, 581–596 (1995)CrossRefADSGoogle Scholar
  34. 34.
    Ertag D., Halsey T.C., Levine A.J., Mason T.G.: Stability of monomer-dimer piles. Phys. Rev. E 66, 051307-1–051307-10 (2002)ADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • A. G. Swartz
    • 1
  • J. B. Kalmbach
    • 1
  • J. Olson
    • 1
  • R. J. Zieve
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaDavisUSA

Personalised recommendations