Advertisement

Granular Matter

, Volume 11, Issue 2, pp 79–86 | Cite as

Brazil nut effect in a rectangular plate under horizontal vibration

  • Fei Fang Chung
  • Sy-Sang Liaw
  • Chia-Yi Ju
Article

Abstract

An intruder to a group of identical small beads enclosed in a rectangular plate will gradually migrate to either the center or one side of the plate when the plate is subjected to a horizontal vibration. By considering probabilities for a bead to move into and off the space between the intruder and the near side of the plate, we predict that the size ratio and the mass ratio of the intruder to small bead have equal but opposite effects in determining the direction of migration. The prediction is confirmed by a molecular dynamics simulation.

Keywords

Segregation Vibration Horizontal Brazil nut effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM (MPG 11,416 KB)

References

  1. 1.
    Rosato A., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil nuts are on tops: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038 (1987). doi: 10.1103/PhysRevLett.58.1038 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Jullien R., Meakin P., Pavlovitch A.: Three-dimension model for particle-size segregation by shaking. Phys. Rev. Lett. 69, 640 (1992). doi: 10.1103/PhysRevLett.69.640 CrossRefADSGoogle Scholar
  3. 3.
    Vanel L., Rosato A.D., Dave R.N.: Rise-time regimes a large sphere in vibrated bulk solids. Phys. Rev. Lett. 78, 1255 (1997). doi: 10.1103/PhysRevLett.78.1255 CrossRefADSGoogle Scholar
  4. 4.
    Knight J.B., Jaeger H.M., Nagel S.R.: Vibration-induced sized separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728 (1993). doi: 10.1103/PhysRevLett.70.3728 CrossRefADSGoogle Scholar
  5. 5.
    Hong D.C., Quinn P.V., Luding S.: Reverse Brazil nut problem: competition between percolation and condensation. Phys. Rev. Lett. 86, 3423 (2001). doi: 10.1103/PhysRevLett.86.3423 CrossRefADSGoogle Scholar
  6. 6.
    Trujillo L., Alam M., Herrmann H.J.: Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Europhys. Lett. 64, 190 (2003). doi: 10.1209/epl/i2003-00287-1 CrossRefADSGoogle Scholar
  7. 7.
    Brey J.J., Ruiz-Montero M.J., Moreno F.: Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95, 098001 (2005). doi: 10.1103/PhysRevLett.95.098001 CrossRefADSGoogle Scholar
  8. 8.
    Yan X., Shi Q., Hou M., Lu K., Chan C.K.: Effects of air on the segregation of particles in a shaken granular bed. Phys. Rev. Lett. 91, 14302 (2003). doi: 10.1103/PhysRevLett.91.014302 CrossRefADSGoogle Scholar
  9. 9.
    Breu A.P.J., Ensner H.M., Kruelle C.A., Rehberg I.: Reversing the Brazil-nut effect: competition between percolation and condensation. Phys. Rev. Lett. 90, 014302 (2003). doi: 10.1103/PhysRevLett.90.014302 CrossRefADSGoogle Scholar
  10. 10.
    Schroter M., Ulrich S., Kreft J., Swift J.B., Swinney H.L.: Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 011307 (2006). doi: 10.1103/PhysRevE.74.011307 ADSGoogle Scholar
  11. 11.
    Schnautz T., Brito R., Kruelle C.A., Rehberg I.: A horizontal Brazil-nut effect and its reverse. Phys. Rev. Lett. 95, 028001 (2005). doi: 10.1103/PhysRevLett.95.028001 CrossRefADSGoogle Scholar
  12. 12.
    Chung F.F., Liu R.-T., Liaw S.-S., Kor J.: Horizontal size segregation in granular matter. Phys. Soc. 50, 224 (2007)Google Scholar
  13. 13.
    Luding S., Herrmann H.J., Blumen A.: Scaling behavior of 2-dimensional arrays of beads under external vibrations. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 3100 (1994). doi: 10.1103/PhysRevE.50.3100 Google Scholar
  14. 14.
    Kondic L.: Dynamics of spherical particles on a surface: collision-induced sliding and other effects. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 751 (1999). doi: 10.1103/PhysRevE.60.751 Google Scholar
  15. 15.
    Painter B., Dutt M., Behringer R.P.: Energy dissipation and clustering for a cooling material on a substrate. Physica D 175, 43 (2003). doi: 10.1016/S0167-2789(02)00566-3 zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Dutt M., Behringer R.P.: Effects of surface friction on a two-dimensional granular system: cooling bound system. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 061304 (2004). doi: 10.1103/PhysRevE.70.061304 Google Scholar
  17. 17.
    Liboff, R.L. (ed.): Kinetic Theory—Classical, Quantum, and Relativistic Descriptions, 2nd edn. Wiley, New York (1998)Google Scholar
  18. 18.
    Ciamarra M.P., Coniglio A., Nicodemi M.: Shear instabilities in granular mixtures. Phys. Rev. Lett. 94, 188001 (2005). doi: 10.1103/PhysRevLett.94.188001 CrossRefADSGoogle Scholar
  19. 19.
    Reis P.M., Sykes T., Mullin T.: Phases of granular segregation in a binary mixture. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 051306 (2006). doi: 10.1103/PhysRevE.74.051306 ADSGoogle Scholar
  20. 20.
    Scherer M.A., Buchholtz V., Pöschel T., Rehberg I.: Swirling granular matter: from rotation to reptation. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54, R4560 (1996). doi: 10.1103/PhysRevE.54.R4560 Google Scholar
  21. 21.
    Chung F.F., Ju C.-Y., Liaw S.-S.: Spiral trajectory in the horizontal Brazil nut effect. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 061304 (2008). doi: 10.1103/PhysRevE.77.061304 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsNational Chung-Hsing UniversityTaichungTaiwan

Personalised recommendations