Advertisement

Granular Matter

, Volume 11, Issue 2, pp 73–78 | Cite as

Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding

  • Lori SanfratelloEmail author
  • Eiichi Fukushima
Article

Abstract

We experimentally investigated 3D biparticulate systems that segregate solely due to density differences in the 3D horizontal rotating drum geometry and compare these to systems which segregate due to size differences. Radial segregation was observed in all systems studied after a few drum rotations. Size induced axial segregation (banding) was observed, as expected. However, contrary to what has sometimes been reported, we found that density differences alone did not induce axial segregation for density ratios up to 4.9.

Keywords

Granular segregation Granular flow Axial segregation Density segregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khakhar D.V., McCarthy J.J., Ottino J.M.: Radial segregation of granular materials in a rotating cylinder. Phys. Fluids 9(12), 1 (1997)CrossRefADSGoogle Scholar
  2. 2.
    Ristow G.H.: Particle mass segregation in a two-dimensional rotating drum. Europhys. Lett. 28, 97 (1994)CrossRefADSGoogle Scholar
  3. 3.
    Clement E., Rajchenbach J., Duran J.: Mixing of a granular material in a bidimensional rotating drum. Europhys. Lett. 30, 7 (1995)CrossRefGoogle Scholar
  4. 4.
    Bideau D., Cantelaube F.: Radial segregation in a 2d drum: an experimental analysis. Europhys. Lett. 30, 133 (1995)CrossRefGoogle Scholar
  5. 5.
    Jain N., Ottino J.M., Lueptow R.M.: Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granular Matter 7, 69 (2005)CrossRefGoogle Scholar
  6. 6.
    Oyama Y.: Studies on mixing of solids. Mixing of binary system of two sizes by ball mill motion. 179th Report Okochi Res Lab I.P.C.R. 37(951), 17 (1939)Google Scholar
  7. 7.
    Donald M.B., Roseman B.: Mixing and de-mixing of solid particles, part 1: Mechanisms in a horizontal drum mixer. Br. Chem. Eng. 7, 749 (1962)Google Scholar
  8. 8.
    Roseman B., Donald M.B.: Mixing and de-mixing of solid particles, part 2: Effects of varying the operating conditions of a horizontal drum mixer. Br. Chem. Eng. 7, 922 (1962)Google Scholar
  9. 9.
    Zik O., Levine D., Lipson S.G., Shtrikman S., Stavans J.: Rotationally induced segregation of granular materials. Phys. Rev. Lett. 73, 644 (1994)CrossRefADSGoogle Scholar
  10. 10.
    Hill K.M., Caprihan A., Kakalios J.: Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys. Rev. Lett. 78(1), 50 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Hill, K.M., Kakalios, J., Yamane, K., Tsuji, Y., Caprihan, A.: Dynamic angle of repose as a function of mixture concentration: results from MRI experiments and DEM simulations. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains, vol. 97, p. 463. A.A.Balkema, Rotterdam (1997)Google Scholar
  12. 12.
    Newey M., Ozik J., van der Meer S.M., Ott E., Losert W.: Band-in-band segregation of multidisperse granular mixtures. Europhys. Lett. 66(2), 205 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Kuo H.P., Hsu R.C., Hsiao Y.C.: Investigation of axial segregation in a rotating drum. Powder Tech. 153, 196 (2005)CrossRefGoogle Scholar
  14. 14.
    Charles C.R.J., Khan Z.S., Morris S.W.: Pattern scaling in axial segregation. Granular Matter 8, 1 (2006)CrossRefGoogle Scholar
  15. 15.
    Taberlet, N., Newey, M., Richard, P., Losert, W.: On axial segregation in a tumbler: an experimental and numerical study. J. Stat. Mech. P07013 (2006)Google Scholar
  16. 16.
    Karolyi A., Kertesz J., Havlin S., Makse H.A., Stanley H.E.: Filling a silo with a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3), 386 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Rapaport D.C.: Simulational studies of axial granular segregation in a rotating cylinder. Phys. Rev. E 65, 061306 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Pohlman N.A., Severson B.L., Ottino J.M., Lueptow R.M.: Suface roughness effects in granular matter: influence on angle of repose and the absence of segregation. Phys. Rev. E 73, 031304 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Hill K.M., Kakalios J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610 (1994)CrossRefADSGoogle Scholar
  20. 20.
    Meier S.W., Melani Barreiro D.A., Ottino J.M., Lueptow R.M.: Coarsening of granular segregation patterns in quasi-two-dimensional tumblers. Nat. Phys. 4, 244–248 (2008)CrossRefGoogle Scholar
  21. 21.
    Alexander A., Muzzio F.J., Shinbrot T.: Effects of scale and inertia on granular banding segregation. Granular Matter 5, 171 (2004)CrossRefGoogle Scholar
  22. 22.
    Maneval J.E., Hill K.M., Smith B.E., Caprihan A.: Effects of end wall friction in rotating cylinder granular flow experiments. Granular Matter 7(4), 199 (2005)CrossRefGoogle Scholar
  23. 23.
    Pohlman N.A., Ottino J.M., Lueptow R.M.: End-wall effects in granular tumblers: From quasi-two-dimensional flow to three-dimensional flow. Phys. Rev. E 74, 031305 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Fukushima E.: Granular flow studies by NMR: a chronology. Adv. Complex Syst. 4, 1 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.New Mexico ResonanceAlbuquerqueUSA
  2. 2.ABQMRAlbuquerqueUSA

Personalised recommendations