Granular Matter

, Volume 11, Issue 1, pp 43–52 | Cite as

A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing

  • Jean-François JerierEmail author
  • Didier Imbault
  • Frederic-Victor Donze
  • Pierre Doremus


In the discrete element method, the packing generation of polydisperse spheres with a high packing density value is a major concern. Among the methods already developed, few algorithms can generate sphere packing with a high density value. The aim of this paper is to present a new geometric algorithm based on tetrahedral meshes to generate dense isotropic arrangements of non-overlapping spheres. The method consists of first filling in every tetrahedron with spheres in contact (i.e., hard-sphere clusters). Then, the algorithm increases the packing density value by detecting the large empty spaces and filling them with new spheres. This new geometric algorithm can also generate a complex shape structure.


Discrete element method Sphere packing Geometric algorithm Polydisperse spheres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Raoush R., Alsaleh M.: Simulation of random packing of polydisperse particles. Powder Technol. 176, 47–55 (2007)CrossRefGoogle Scholar
  2. 2.
    Aparicio N., Cocks A.: On the representation of random packings of spheres for sintering simulations. Acta Metallurgica Mater. 43, 3873–3884 (1994)CrossRefGoogle Scholar
  3. 3.
    Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter 7, 31–43 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Barmin, Y.V., Bataronov, I.L., Bondarev, A.V., Ozherelyev, V.V.: Anelastic relaxation in non-crystalline metals: geometrical aspects. J. Phys. Conf. Ser. 98(4), 042,024 (3pp). (2008)Google Scholar
  5. 5.
    Borkovec M., de Paris W.: The fractal dimension of the apollonian sphere packing. Fractals 2, 521–526 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Camborde F., Mariotti C., Donze F.: Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotechnics 27, 225–247 (2000)CrossRefGoogle Scholar
  7. 7.
    Cheng Y., Guo S., Lai H.: Dynamic simulation of random packing of spherical particles. Powder Technol. 107, 123–130 (2000)CrossRefGoogle Scholar
  8. 8.
    Coube, O., Cocks, A., Wu, C.Y.: Experimental and numerical study of die filling, powder transfer and die compaction. Powder Metall. 48 (2005)Google Scholar
  9. 9.
    Cui L., O’Sullivan C.: Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter 5, 135–145 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Delaunay B.: Sur la sphre vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)Google Scholar
  11. 11.
    Donev A., Torquato S., Stillinger F., Connelly R.: Jamming in hard sphere and disk packings. J. Appl. Phys. 95, 989–999 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Dutt M., Hancock B., Bentham C., Elliott J.: An implementation of granular dynamics for simulating frictional elastic particles based on the dl_poly code. Comput. Phys. Commun. 166, 26–44 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Feng Y., Owen D.: An augmented spatial digital tree algorithm for contact detection in computational mechanics. Int. J. Numer. Methods Eng. 55, 159–176 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Geaorge, P.: On delaunay-based three dimensional automatic mesh generator. Finite Elements Anal. Des. 25, 297–317. (1997)
  15. 15.
    Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. (2002)
  16. 16.
    Han K., Feng Y., Owen D.: Sphere packing with a geometric based compression algorithm. Powder Technol. 155, 33–41 (2005)CrossRefGoogle Scholar
  17. 17.
    Herrmann H., Baram R., Wackenhut M.: Searching for the perfect packing. Physica A 330, 77–82 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Jodrey W., Tory E.: Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347–2351 (1985)CrossRefADSGoogle Scholar
  19. 19.
    Jullien R., Meakin P.: Computer simulations of steepest descent ballistic deposition. Colloids Surf. A Physicochem. Eng. Asp. 165, 405–422 (2000)CrossRefGoogle Scholar
  20. 20.
    Kadushnikov R., Nurkanov E.: Investigation of the density characteristics of three-dimensional stochastic packs of spherical particles using a computer model. Powder Metall. Metal Ceramics 40, 229–235 (2001)CrossRefGoogle Scholar
  21. 21.
    Kansal A., Stillinger F., Stillinger F., Stillinger F.: Computer generation of dense polydisperse sphere packings. Chem. Phys. 117, 8212–8218 (2002)ADSGoogle Scholar
  22. 22.
    Kozicki, J., Donze, F.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.05.023 (2008, in press)
  23. 23.
    Liu G., Thompson K.E.: Influence of computational domain boundaries on internal structure in low-porosity sphere packings. Powder Technol. 113, 185–196 (2000)CrossRefGoogle Scholar
  24. 24.
    Liu L., Yuan Y.: Dynamic simulation of powder compact by random packing of monosized and polydisperse particles. J. Mater. Sci. Lett. 19, 841–843 (2000)CrossRefGoogle Scholar
  25. 25.
    Lubachevsky B., Stillinger F.: Geometric properties of random disk packings. Stat. Phys. 60, 561–583 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Martin C.: Elasticity, fracture and yielding of cold compacted metal powders. Mech. Phys. Solids 52, 1691–1717 (2004)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Mueller G.: Numerically packing spheres in cylinders. Powder Technol. 159, 105–110 (2005)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Nicot F., Sibille L., Donze F., Darve F.: From microscopic to macroscopic second-order works in granular assemblies. Mech. Mater. 39, 664–684 (2007)CrossRefGoogle Scholar
  29. 29.
    Salvat W., Mariani N., Barreto G., Martinez O.: An algorithm to simulate packing structure in cylindrical containers. Catal. Today 107–108, 513–519 (2005)CrossRefGoogle Scholar
  30. 30.
    Schoberl, J.: Netgen: an advancing front 2d/3d mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52. (2000)
  31. 31.
    Siiria S., Yliruusi J.: Particle packing simulations based on newtonian mechanics. Powder Technol. 174, 82–92 (2007)CrossRefGoogle Scholar
  32. 32.
    Stroeven P., Stroeven M.: Assessment of packing characteristics by computer simulation. Cement Concrete Res. 29, 1201–1206 (1999)CrossRefGoogle Scholar
  33. 33.
    Stroeven P., Stroeven M.: Computer simulation of close random packing of equal spheres. Anal. Stereol. 22, 1–10 (2003)Google Scholar
  34. 34.
    Torquato S., Stillinger F.: Multiplicity of generation, selection, and classification procedures for jammed hard-particle packings. J. Phys. Chem. B 105, 11,849–11,853 (2001)CrossRefGoogle Scholar
  35. 35.
    Yang R., Zou R., Yu A.: Computer simulation of the packing of fine particles. Phys. Rev. E 63, 3900–3908 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jean-François Jerier
    • 1
    Email author
  • Didier Imbault
    • 1
  • Frederic-Victor Donze
    • 1
  • Pierre Doremus
    • 1
  1. 1.Laboratoire Sols, Solides, Structures et Risques, Institut National Polytechnique de GrenobleUniversité Joseph FourierGrenobleFrance

Personalised recommendations