Advertisement

Granular Matter

, Volume 11, Issue 1, pp 43–52 | Cite as

A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing

  • Jean-François JerierEmail author
  • Didier Imbault
  • Frederic-Victor Donze
  • Pierre Doremus
Article

Abstract

In the discrete element method, the packing generation of polydisperse spheres with a high packing density value is a major concern. Among the methods already developed, few algorithms can generate sphere packing with a high density value. The aim of this paper is to present a new geometric algorithm based on tetrahedral meshes to generate dense isotropic arrangements of non-overlapping spheres. The method consists of first filling in every tetrahedron with spheres in contact (i.e., hard-sphere clusters). Then, the algorithm increases the packing density value by detecting the large empty spaces and filling them with new spheres. This new geometric algorithm can also generate a complex shape structure.

Keywords

Discrete element method Sphere packing Geometric algorithm Polydisperse spheres 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Raoush R., Alsaleh M.: Simulation of random packing of polydisperse particles. Powder Technol. 176, 47–55 (2007)CrossRefGoogle Scholar
  2. 2.
    Aparicio N., Cocks A.: On the representation of random packings of spheres for sintering simulations. Acta Metallurgica Mater. 43, 3873–3884 (1994)CrossRefGoogle Scholar
  3. 3.
    Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter 7, 31–43 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Barmin, Y.V., Bataronov, I.L., Bondarev, A.V., Ozherelyev, V.V.: Anelastic relaxation in non-crystalline metals: geometrical aspects. J. Phys. Conf. Ser. 98(4), 042,024 (3pp). http://stacks.iop.org/1742-6596/98/042024 (2008)Google Scholar
  5. 5.
    Borkovec M., de Paris W.: The fractal dimension of the apollonian sphere packing. Fractals 2, 521–526 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Camborde F., Mariotti C., Donze F.: Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotechnics 27, 225–247 (2000)CrossRefGoogle Scholar
  7. 7.
    Cheng Y., Guo S., Lai H.: Dynamic simulation of random packing of spherical particles. Powder Technol. 107, 123–130 (2000)CrossRefGoogle Scholar
  8. 8.
    Coube, O., Cocks, A., Wu, C.Y.: Experimental and numerical study of die filling, powder transfer and die compaction. Powder Metall. 48 (2005)Google Scholar
  9. 9.
    Cui L., O’Sullivan C.: Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter 5, 135–145 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Delaunay B.: Sur la sphre vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)Google Scholar
  11. 11.
    Donev A., Torquato S., Stillinger F., Connelly R.: Jamming in hard sphere and disk packings. J. Appl. Phys. 95, 989–999 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Dutt M., Hancock B., Bentham C., Elliott J.: An implementation of granular dynamics for simulating frictional elastic particles based on the dl_poly code. Comput. Phys. Commun. 166, 26–44 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Feng Y., Owen D.: An augmented spatial digital tree algorithm for contact detection in computational mechanics. Int. J. Numer. Methods Eng. 55, 159–176 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Geaorge, P.: On delaunay-based three dimensional automatic mesh generator. Finite Elements Anal. Des. 25, 297–317. http://www.geuz.org/gmsh/ (1997)
  15. 15.
    Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. http://www.geuz.org/gmsh/ (2002)
  16. 16.
    Han K., Feng Y., Owen D.: Sphere packing with a geometric based compression algorithm. Powder Technol. 155, 33–41 (2005)CrossRefGoogle Scholar
  17. 17.
    Herrmann H., Baram R., Wackenhut M.: Searching for the perfect packing. Physica A 330, 77–82 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Jodrey W., Tory E.: Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347–2351 (1985)CrossRefADSGoogle Scholar
  19. 19.
    Jullien R., Meakin P.: Computer simulations of steepest descent ballistic deposition. Colloids Surf. A Physicochem. Eng. Asp. 165, 405–422 (2000)CrossRefGoogle Scholar
  20. 20.
    Kadushnikov R., Nurkanov E.: Investigation of the density characteristics of three-dimensional stochastic packs of spherical particles using a computer model. Powder Metall. Metal Ceramics 40, 229–235 (2001)CrossRefGoogle Scholar
  21. 21.
    Kansal A., Stillinger F., Stillinger F., Stillinger F.: Computer generation of dense polydisperse sphere packings. Chem. Phys. 117, 8212–8218 (2002)ADSGoogle Scholar
  22. 22.
    Kozicki, J., Donze, F.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.05.023 (2008, in press)
  23. 23.
    Liu G., Thompson K.E.: Influence of computational domain boundaries on internal structure in low-porosity sphere packings. Powder Technol. 113, 185–196 (2000)CrossRefGoogle Scholar
  24. 24.
    Liu L., Yuan Y.: Dynamic simulation of powder compact by random packing of monosized and polydisperse particles. J. Mater. Sci. Lett. 19, 841–843 (2000)CrossRefGoogle Scholar
  25. 25.
    Lubachevsky B., Stillinger F.: Geometric properties of random disk packings. Stat. Phys. 60, 561–583 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Martin C.: Elasticity, fracture and yielding of cold compacted metal powders. Mech. Phys. Solids 52, 1691–1717 (2004)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Mueller G.: Numerically packing spheres in cylinders. Powder Technol. 159, 105–110 (2005)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Nicot F., Sibille L., Donze F., Darve F.: From microscopic to macroscopic second-order works in granular assemblies. Mech. Mater. 39, 664–684 (2007)CrossRefGoogle Scholar
  29. 29.
    Salvat W., Mariani N., Barreto G., Martinez O.: An algorithm to simulate packing structure in cylindrical containers. Catal. Today 107–108, 513–519 (2005)CrossRefGoogle Scholar
  30. 30.
    Schoberl, J.: Netgen: an advancing front 2d/3d mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52. http://www.hpfem.jku.at/netgen/ (2000)
  31. 31.
    Siiria S., Yliruusi J.: Particle packing simulations based on newtonian mechanics. Powder Technol. 174, 82–92 (2007)CrossRefGoogle Scholar
  32. 32.
    Stroeven P., Stroeven M.: Assessment of packing characteristics by computer simulation. Cement Concrete Res. 29, 1201–1206 (1999)CrossRefGoogle Scholar
  33. 33.
    Stroeven P., Stroeven M.: Computer simulation of close random packing of equal spheres. Anal. Stereol. 22, 1–10 (2003)Google Scholar
  34. 34.
    Torquato S., Stillinger F.: Multiplicity of generation, selection, and classification procedures for jammed hard-particle packings. J. Phys. Chem. B 105, 11,849–11,853 (2001)CrossRefGoogle Scholar
  35. 35.
    Yang R., Zou R., Yu A.: Computer simulation of the packing of fine particles. Phys. Rev. E 63, 3900–3908 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jean-François Jerier
    • 1
    Email author
  • Didier Imbault
    • 1
  • Frederic-Victor Donze
    • 1
  • Pierre Doremus
    • 1
  1. 1.Laboratoire Sols, Solides, Structures et Risques, Institut National Polytechnique de GrenobleUniversité Joseph FourierGrenobleFrance

Personalised recommendations