Granular Matter

, Volume 10, Issue 2, pp 93–103 | Cite as

Computer simulation of evolving capillary bridges in granular media

  • Zdeněk Grof
  • Christopher J. Lawrence
  • František Štěpánek


A numerical method for the simulation of spatially evolving liquid–vapour interfaces in arbitrary two dimensional granular media is presented. Solid- and liquid-phase objects are described by polynomials whose edges evolve according to surface tension forces until a prescribed equilibrium contact angle at three-phase contact points and a constant mean curvature on two-phase contact lines is achieved. The main advantage of the method is the possibility to account for topological transitions (interface coalescence or rupture) and direct calculation of the force acting on solid interfaces due to liquid bridges. The method has been validated by comparing numerical and analytical results for a single pendular liquid bridge and then demonstrated on the simulation of transition from the pendular to funicular and capillary state in a wet particle assembly.


Liquid bridge Capillary force Contact angle Surface tension Topology Condensation Drying 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brakke K.A. (1992). The surface evolver. Exp. Math. 1: 141–165 MATHMathSciNetGoogle Scholar
  2. 2.
    Grof, Z., Cook, J., Lawrence, C.J., Štěpánek, F.: The interaction between small clusters of cohesive particles and laminar flow: a coupled DEM/CFD approach. J. Petrol. Sci. Eng. (2006) (submitted)Google Scholar
  3. 3.
    Grof Z., Kohout M. and Štěpánek F. (2007). Multi-scale simulation of needle-shaped particle breakage under uniaxial compaction. Chem. Eng. Sci. 62: 1418–1429 CrossRefGoogle Scholar
  4. 4.
    Iveson S.M., Litster J.D. and Hapgood K.P. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117: 3–39 CrossRefGoogle Scholar
  5. 5.
    Herminghaus S. (2005). Dynamics of wet granular matterr. Adv. Phys. 54: 221–261 CrossRefADSGoogle Scholar
  6. 6.
    Kohout M., Grof Z. and Štěpánek F. (2006). Pore-scale modelling and tomographic visualisation of drying in granular media. J. Colloid Interface Sci. 299: 342–351 CrossRefGoogle Scholar
  7. 7.
    Mitarai N. and Nori F. (2006). Wet granular materials. Adv. Phys. 55: 1–45 CrossRefADSGoogle Scholar
  8. 8.
    Park J. and Moon J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22: 3506–3513 CrossRefGoogle Scholar
  9. 9.
    Scardovelli R. and Zaleski S. (1999). Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31: 567–603 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Štěpánek F. and Ansari M.A. (2005). Computer simulation of granule microstructure formation. Chem. Eng. Sci. 60: 4019–4029 CrossRefGoogle Scholar
  11. 11.
    Štěpánek F. and Rajniak P. (2006). Droplet morphologies on particles with macroscopic surface roughness. Langmuir 22: 917–923 CrossRefGoogle Scholar
  12. 12.
    Štěpánek F., Šoós M. and Rajniak P. (2007). Characterization of porous media by the virtual capillary condensation method. Colloids Surf. A Physicochem. Eng. Asp. 300: 11–20 CrossRefGoogle Scholar
  13. 13.
    Urso M.E.D., Lawrence C.J. and Adams M.J. (1999). Pendular, funicular, and capillary bridges: results for two dimensions. J. Colloid Interface Sci. 220: 42–56 CrossRefGoogle Scholar
  14. 14.
    Willett C.D., Adams M.J., Johnson S.A. and Seville J.P.K. (2000). Capillary bridges between two spherical bodies. Langmuir 16: 9396–9405 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Zdeněk Grof
    • 1
  • Christopher J. Lawrence
    • 1
  • František Štěpánek
    • 1
  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations