Granular Matter

, Volume 10, Issue 2, pp 113–122 | Cite as

Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production



Aerosol spray pyrolysis (ASP) was employed for the synthesis of oxygen-deficient doped ferrite systems to be used as redox materials for the production of solar Hydrogen from water via a two-step thermochemical water-splitting cycle. In the first step (water splitting) the reduced state of a metal oxide is oxidized by taking oxygen from water and producing hydrogen; in the second step (regeneration) it is reduced again by delivering some of its lattice oxygen. Redox materials of the iron spinel family doped with other bivalent metals (Zn, Ni, Mn) were synthesized via ASP, characterized and evaluated with respect to their water-splitting activity. Organic additives, like citric acid, in the precursor solutions were found to result in products with finer particle size and to enhance the water-splitting activity of the synthesized materials. Material performance (water splitting activity, hydrogen yield, regeneration capability) was found to depend on the dopants’ kind and stoichiometry; in particular high percentages of Zn dopant seem to enhance the overall materials’ performance. ASP synthesized materials have demonstrated higher water conversion and hydrogen yields than materials of the same composition synthesized through solid-state routes. The ASP synthesis process was scaled-up successfully maintaining the favorable characteristics of the synthesized materials.


Ferrites Aerosol spray pyrolysis Water splitting Hydrogen production Redox materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakamura T. (1977). Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy 19: 467–475 CrossRefADSGoogle Scholar
  2. 2.
    Tamaura Y., Steinfeld A., Kuhn P. and Ehrensberger K. (1995). Production of solar Hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20(4): 325–330 CrossRefGoogle Scholar
  3. 3.
    Ehrensberger K., Frei A., Kuhn P., Oswald H.R. and Hug P. (1995). Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1-yO and iron manganese Oxides (Fe1-xMnx)1-yO. Solid State Ionics 78: 151–160 CrossRefGoogle Scholar
  4. 4.
    Rubbia, C.: Hydrogen at crossroads between science and politics. In: Conference on the hydrogen economy—a bridge to sustainable energy, Brussels, 16–17 June 2003Google Scholar
  5. 5.
    Perkins C. and Weimer A.W. (2004). Likely near-term solar–thermal water splitting technologies. Int. J. Hydrogen Energy 29(15): 1587–1599 CrossRefGoogle Scholar
  6. 6.
    Kojima M., Sano T., Wada Y., Yamamoto T., Tsuji M. and Tamaura Y. (1996). Thermochemical decomposition of H2O to H2 on cation-excess ferrite. J. Phys. Chem. Solids 57(11): 1757–1763 CrossRefADSGoogle Scholar
  7. 7.
    Steinfeld A., Sanders S. and Palumbo R. (1999). Design aspects of solar thermochemical engineering - A case study: Two–step water-splitting cycle using the Fe3O4/FeO redox system. Solar Energy 65(1): 43–53 CrossRefGoogle Scholar
  8. 8.
    Goldman A. (1999). Handbook of Modern Ferromagnetic Materials. Kluwer, Dordrecht, 303–350 Google Scholar
  9. 9.
    Agrafiotis C., Roeb M., Konstandopoulos A.G., Nalbandian L., Zaspalis V.T., Sattler C., Stobbe P. and Steele A.M. (2005). Solar water splitting for hydrogen production with catalytic monolithic reactors. Solar Energy 79(4): 409–421 CrossRefGoogle Scholar
  10. 10.
    Roeb M., Sattler C., Klüser R., Monnerie N., deOliveira L., Konstandopoulos A.G., Agrafiotis C., Zaspalis V.T., Nalbandian L., Stobbe P. and Steele A.M. (2006). Solar hydrogen production by a two-step cycle based on mixed iron oxides. J. Solar Energy Eng. Trans. ASME 128: 125–133 CrossRefGoogle Scholar
  11. 11.
    Heck R.M. and Farrauto R.J. (1995). Catalytic Air Pollution Control—Commercial Technology. Van Nostrand Reinhold, New York Google Scholar
  12. 12.
    Geus J.W. and van Giezen J.C. (1999). Monoliths in catalytic oxidation, catalysis. Today 47: 169–180 CrossRefGoogle Scholar
  13. 13.
    Sorenson, S.C., Hoej, J.W., Stobbe, P.: Flow characteristics of SiC diesel particulate filter material. SAE technical paper 940236 (SP-1020) (1994)Google Scholar
  14. 14.
    Itoh, A., Shimato, K., Komori, T., Okazoe, H., Yamada, T., Niimura, K., Watanabe, Y.: Study of SiC application to diesel particulate filter (part 1): material development. SAE technical paper 930360 (SP-943) (1993)Google Scholar
  15. 15.
    Hoffschmidt B., Fernández V., Konstandopoulos A.G., Mavroidis I., Romero M., Stobbe P. and Téllez F. (2001). Development of ceramic volumetric receiver technology. In: Funken, K.H. and Bucher, W. (eds) Proceedings of 5th Cologne Solar Symposium, June 21, Forschungsbericht 2001-10., pp 51–61. DLR, Germany Google Scholar
  16. 16.
    Fend T., Hoffschmidt B., Pitz-Paal R., Reutter O. and Rietbrock P. (2004). Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties. Energy 29(5–6): 823–833 CrossRefGoogle Scholar
  17. 17.
    Agrafiotis C., Mavroidis I., Konstandopoulos A.G., Hoffschmidt B., Stobbe P., Romero M. and Fernandez-Quero V. (2007). Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. J. Solar Energy Mater. Solar Cells 91: 474–488 CrossRefGoogle Scholar
  18. 18.
    Konstandopoulos, A.G., Papaioannou, E., Zarvalis, D., Skopa, S., Baltzopoulou, P., Kladopoulou, E., Kostoglou, M., Lorentzou., S.: Catalytic filter systems with direct and indirect soot oxidation activity, SAE tecnical paper 2005-01-0670 (2005)Google Scholar
  19. 19.
    Konstandopoulos, A.G., Zarvalis, D., Papaioannou, E., Vlachos, N.D., Boretto, G., Pidria, M.F., Faraldi, P., Piacenza, O., Prenninger, P., Cartus, T., Schreier, H., Brandstatter, W., Wassermayr, C., Lepperhof, G., Scholz, V., Luers, B., Schnitzler, J., Claussen, M., Wollmann, A., Maly, M., Tsotridis, G., Vaglieco, B.M., Merola, S.S., Webster, D., Bergeal, D., Gorsmann, C., Obernosterer, H., Fino, D., Russo, N., Saracco, G., Specchia, V., Moral, N., D’Anna, A., D’Alessio, A., Zahoransky, R., Laile, E., Schmidt, S., Ranalli, M.: The diesel exhaust aftertreatment (DEXA) cluster: a systematic approach to diesel particulate emission control in Europe. SAE technical paper no. 2004-01-0694 (SP-1861), (2004)Google Scholar
  20. 20.
    Messing G.L., Zhang S.C. and Jayanthi G.V. (1993). Ceramic powder synthesis by spray-pyrolysis. J. Am. Ceram. Soc. 76(11): 2707–2726 CrossRefGoogle Scholar
  21. 21.
    Senzaki Y., Caruso J., Hampden-Smith M., Kodas T.T. and Wang L. (1995). Preparation of strontium ferrite particles by spray-pyrolysis. J. Am. Ceram. Soc. 78(11): 2973–2976 CrossRefGoogle Scholar
  22. 22.
    Okuyama K. and Lenggoro I.W. (2003). Preparation of nanoparticles via spray route. Chem. Eng. Sci. 58(3–6): 537–554 CrossRefGoogle Scholar
  23. 23.
    Kaczmarek W.A., Calka A. and Ninham B.W. (1992). Preparation of fine, hollow, spherical BaFe12O19 powders. Mater. Chem. Phys. 32(1): 43–48 CrossRefGoogle Scholar
  24. 24.
    Li Q., Sorensen C.M., Klabunde K.J. and Hadjipanayis G.C. (1993). Aerosol spray pyrolysis synthesis of magnetic manganese ferrite particles. Aerosol Sci. Technol. 19: 453–467 CrossRefGoogle Scholar
  25. 25.
    Elmasry M.A.A., Gaber A. and Khater E.M.H. (1997). Preparation of nickel ferrite using the aerosolization technique.1. Aerosolization behaviour of individual raw material solutions. Powder Technol. 90(2): 161–164 CrossRefGoogle Scholar
  26. 26.
    Zhao X.Y., Zheng B.C., Gu H.C., Li C.Z., Zhang S.C. and Ownby P.D. (1999). Preparation of phase homogeneous Mn–Zn ferrite powder by spray pyrolysis. J. Mater. Res. 14(7): 3073–3082 ADSCrossRefGoogle Scholar
  27. 27..
    Wu Z., Okuya M. and Kaneko S. (2001). Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions. Thin Solid Films 385(1–2): 109–114 CrossRefADSGoogle Scholar
  28. 28.
    Sankaranarayanan V.K., Pant R.P. and Rastogi A.C. (2000). Spray pyrolytic deposition of barium hexaferrite thin films for magnetic recording applications. J. Magn. Magn. Mater. 220(1): 72–78 CrossRefADSGoogle Scholar
  29. 29.
    Todorovska R.V., Groudeva-Zotova S.t. and Todorovsky D.S. (2002). Spray pyrolysis deposition of α-Fe2O3 thin films using iron (III) citric complexes. Mater. Lett. 56(5): 770–774 CrossRefGoogle Scholar
  30. 30.
    Marcilly C., Courty P. and Delmon B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors. J. Am. Ceram. Soc. 53(1): 56–57 CrossRefGoogle Scholar
  31. 31.
    Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3330697, (1967)Google Scholar
  32. 32.
    Douy A. (2001). Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses. Int. J. Inorg. Mater. 3: 699–707 CrossRefGoogle Scholar
  33. 33.
    Karadimitra, K., Papaioannou, E., Macheridou, G., Konstandopoulos, A. G.: Ceria nanoparticle coated filters for soot emission control. In: PARTEC 2001, International Congress for Particle Technology, 27–29 March 2001, Nuremberg, Germany (2001)Google Scholar
  34. 34.
    Karadimitra, K., Skaperdas, E., Macheridou, G., Konstandopoulos, A. G.: Pulse cleaning of a compact hot gas filter. In: PARTEC 2001, international congress for particle technology, 27–29 March 2001, Nuremberg, Germany (2001)Google Scholar
  35. 35.
    Klug H.P. and Alexander L.E. (1974). X-ray Diffraction Procedures. Wiley, New York, 642 Google Scholar
  36. 36.
    Nalbandian L., Zaspalis V.T., Evdou A., Agrafiotis C. and Konstandopoulos A.G. (2004). Redox materials for hydrogen production from the water decomposition reaction. Chem. Eng. Trans. 4: 43–48 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Aerosol and Particle Technology LaboratoryCERTH/CPERIThermi-ThessalonikiGreece
  2. 2.Department of Chemical EngineeringAristotle UniversityThessalonikiGreece

Personalised recommendations