Advertisement

Granular Matter

, 9:337 | Cite as

Development of micromechanical models for granular media

The projection problem
  • Stuart D. C. Walsh
  • Antoinette Tordesillas
  • John F. Peters
Article

Abstract

Micromechanical analysis has the potential to resolve many of the deficiencies of constitutive equations of granular continua by incorporating information obtained from particle-scale measurements. The outstanding problem in applying micromechanics to granular media is the projection scheme to relate continuum variables to particle-scale variables. Within the confines of a projection scheme that assumes affine motion, contact laws based on binary interactions do not fully capture important instabilities. Specifically, these contact laws do not consider mesoscale mechanics related to particle group behaviour such as force chains commonly seen in granular media. The implications of this are discussed in this paper by comparison of two micromechanical constitutive models to particle data observed in computer simulations using the discrete element method (DEM). The first model, in which relative deformations between isolated particle pairs are projected from continuum strain, fails to deliver the observed behaviour. The second model accounts for the contact mechanics at the mesoscale (i.e. particle group behaviour) and, accordingly, involves a nonaffine projection scheme. In contrast with the first, the second model is shown to display strain softening behaviour related to dilatancy and produce realistic shear bands in finite element simulations of a biaxial test. Importantly, the evolution of microscale variables is correctly replicated.

Keywords

Micromechanics Micropolar Thermomechanics Mesoscale 

References

  1. 1.
    Aifantis E.C. (1984). Remarks on media with microstructure. Int. J. Eng. Sci. 22: 961–968 zbMATHCrossRefGoogle Scholar
  2. 2.
    Bagi K. (1996). Stress and strain in granular assemblies. Mech. Mater. 22: 165–177 CrossRefGoogle Scholar
  3. 3.
    Bathurst R.J., Rothenburg L. (1990). Observations on stress–force–fabric relationships in idealized granular materials. Mech. Mater. 9: 65–80 CrossRefGoogle Scholar
  4. 4.
    de Borst R., Mühlhaus H.-B. (1992). Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35: 521–539 zbMATHCrossRefGoogle Scholar
  5. 5.
    de Borst R., Sluys L.J. (1991). Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90: 805–827 CrossRefGoogle Scholar
  6. 6.
    Calvetti F., Combe G., Lanier J. (1997). Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-Fric. Mater. 2: 121–163 CrossRefGoogle Scholar
  7. 7.
    Chang C.S., Liao C.L. (1990). Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 26(4): 437–453 zbMATHCrossRefGoogle Scholar
  8. 8.
    Collins I.F. (2005). The concept of stored plastic work or frozen elastic energy in soil mechanics. Geotechnique 55(5): 373–382 CrossRefGoogle Scholar
  9. 9.
    Collins I.F., Houlsby G.T. (1997). Applications of thermomechanical principles to the modeling of geotechnical materials. Proc. Roy. Soc. London A 453: 1975–2001 zbMATHADSCrossRefGoogle Scholar
  10. 10.
    Cook, B.K., Jensen, R.P. (eds.): Discrete Element Methods: Numerical Modeling of Discontinua. ASCE Geotechnical Special Publication No. 117. ASCE, Reston, VA (2002)Google Scholar
  11. 11.
    Edwards S.F., Grinev D.V. (2003). Statistical mechanics of granular materials: stress propagation and distribution of contact forces. Granular Matter 4: 147–153 zbMATHCrossRefGoogle Scholar
  12. 12.
    Eringen A.C. (1968). Theory of micropolar elasticity. In: Liebowitz, H. (eds) Fracture—An Advanced Treatise, vol. II, pp 621–693. Academic Press, New York Google Scholar
  13. 13.
    Gardiner B.S., Tordesillas A. (2003). Micromechanical constitutive modelling of granular media: evolution and loss of contacts in particle clusters. J. Eng. Math. 52(1): 93–106 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldenberg C., Goldhirsch I. (2002). Force chains, microelasticity and macroelasticity. Phys. Rev. Lett. 89(8): 084302 CrossRefADSGoogle Scholar
  15. 15.
    Houlsby G.T., Puzrin A.M. (2000). A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plasticity 16: 1017–1047 zbMATHCrossRefGoogle Scholar
  16. 16.
    Jaeger H.M., Nagel S.R., Behringer R.P. (1996). Granular solids, liquids and gases. Rev. Mod. Phys. 64(4): 1259–1273 CrossRefADSGoogle Scholar
  17. 17.
    Liao C.-L., Chang T.-P., Young D.-H., Chang C.S. (1997). Stress–strain relation for granular materials based on hypothesis of best fit. Int. J. Solids Struct. 64(31–32): 4087–4100 CrossRefGoogle Scholar
  18. 18.
    Majmudar T.S., Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435: 1079–1082 CrossRefADSGoogle Scholar
  19. 19.
    Mindlin R.D. (1965). Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1: 417–438 CrossRefGoogle Scholar
  20. 20.
    Oda M. (1993). Inherent and induced anisotropy in plasticity theory of granular soils. Mech. Mater. 16: 35–45 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Oda, M., Iwashita, K. (eds.): Mechanics of Granular Materials: An Introduction. A.A. Balkema, Rotterdam (1999)Google Scholar
  22. 22.
    Oda M., Iwashita K. (2000). Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38: 1713–1740 CrossRefGoogle Scholar
  23. 23.
    Oda M., Kazama H. (1998). Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4): 465–481 Google Scholar
  24. 24.
    Oda M., Yoshida T. (1999). Recent laboratory study 1: shear band development. In: Oda, M., Iwashita, K. (eds) Mechanics of Granular Materials, pp 299–308. A.A. Balkema, Rotterdam Google Scholar
  25. 25.
    Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A. (2005). Characterization of force chains in granular material. Phys. Rev. E 72: 041307 CrossRefADSGoogle Scholar
  26. 26.
    Puzrin A.M., Houlsby G.T. (2001). A thermomechanical framework for rate-independent dissipative materials with internal functions. Int. J. Plasticity 17: 1147–1165 zbMATHCrossRefGoogle Scholar
  27. 27.
    Radjai F., Wolf D.E., Jean M., Moreau J. (1998). Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1): 61–64 CrossRefADSGoogle Scholar
  28. 28.
    Roscoe K.H., Schofield A.N., Wroth C.P. (1958). On the yielding of soils. Geotechnique 8(1): 25–53 Google Scholar
  29. 29.
    Roscoe, K.H., Burland, J.B.: On the Generalized Stress–Strain Behavior of ‘Wet’ Clay, Engineering Plasticity, pp. 539–609. Cambridge University Press, Cambridge (1968)Google Scholar
  30. 30.
    Rothenburg L., Bathurst R.J. (1989). Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4): 601–614 Google Scholar
  31. 31.
    Tejchman J., Herle I., Wehr J. (1999). FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. Int. J. Numer. Anal. Methods Geomech. 23: 2045–2074 zbMATHCrossRefGoogle Scholar
  32. 32.
    Tordesillas A., Peters J.F., Gardiner B. (2004). Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Methods Geotech. Eng. 29: 981–1010 CrossRefGoogle Scholar
  33. 33.
    Tordesillas A., Walsh S.D.C. (2002). Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124: 106–111 CrossRefGoogle Scholar
  34. 34.
    Valanis K.C. (1996). A gradient theory of internal variables. Acta Mech. 116: 1–14 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Valanis K.C., Peters J.F. (1991). An endochronic plasticity theory with shear-volumetric coupling. Int. J. Numer. Anal. Methods Geomech. 15: 77–102 zbMATHCrossRefGoogle Scholar
  36. 36.
    Valanis K.C., Peters J.F. (1996). Ill-posedness of the initial and boundary value problems in non-associative plasticity. Acta Mech. 114: 1–25 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Vardoulakis I., Graf B. (1985). Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique 35: 299–317 CrossRefGoogle Scholar
  38. 38.
    Tordesillas, A., Walsh, S.D.C.: Analysis of deformation and localization in thermomicromechanical Cosserat models of granular media. In: Garcia-Rojo, H.J., Herrmann, S., McNamara, R. (eds.) Proceedings of the Fifth International Conference on the Micromechanics of Granular Media Powders and Grains 2005. Powders and Grains, vol. 1, pp. 419–424. A.A. Balkema, Rotterdam (2005)Google Scholar
  39. 39.
    Walsh S.D.C., Tordesillas A. (2004). A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167(3–4): 145–169 zbMATHCrossRefGoogle Scholar
  40. 40.
    Tordesillas A., Walsh S.D.C., Gardiner B. (2004). Bridging the length scales: Micromechanics of granular media. BIT Numer. Maths. 44: 539–556 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tordesillas, A., Walsh, S.D.C., Muthuswamy, M.: Role of mesoscale kinematics and non-affine motion in the transition from particle to bulk mechanical properties. J. Engng. Mech. ASCE (2007) (in press)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Stuart D. C. Walsh
    • 1
  • Antoinette Tordesillas
    • 1
  • John F. Peters
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of MelbourneMelbourneAustralia
  2. 2.US Army Corps of EngineersEngineer Research and Development CenterVicksburgUSA

Personalised recommendations