Granular Matter

, 9:205 | Cite as

The spreading of a granular mass: role of grain properties and initial conditions

Article

Abstract

We present 2D numerical simulations of the collapse and spreading of granular columns for which the final geometry of the deposit and the runout distance are studied. Both the effects of the initial geometry and the effects of the details of the interactions between the grains are investigated. The scaling of the runout distance shows both a linear and a power-law dependence on the aspect ratio of the initial column, in agreement with previous findings (Balmforth and Kerswell in J. Fluid Mech. 538, 399–428, 2004; Lajeunesse et al. in Phys. Fluids 17, 103302, 2005; Lube et al. in Phys. Rev. E 72, 041301, 2005; Staron and Hinch in J. Fluid Mech. 545, 1–27, 2005), and independently of the value of the inter-grain friction. The latter controls the prefactor of the scaling, the effective frictional properties of the flow, and its internal structure. The non-trivial mass distribution induced by the initial geom- etry of the column strongly influences the dissipation process, and is believed to control the power-law dependence of the runout distance on the column aspect ratio.

Keywords

Granular flows Runout Effective friction Numerical simulations Contact dynamics 

References

  1. 1.
    Aranson I.S. and Tsimring L.S. (2001). Continuum descrition of avalanches in granular media. Phys. Rev. E 64: R020301 CrossRefADSGoogle Scholar
  2. 2.
    Balmforth N.J. and Kerswell R.R. (2004). Granular collapse in two dimensions. J. Fluid Mech. 538: 399–428 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Cleary P.W. and Campbell C.S. (1993). Self-lubrication for long run-out landslides: examination by computer simulation. J. Geophys. Res. 98(21): 911–924 Google Scholar
  4. 4.
    Cundall P. and Stack O. (1979). Geotechnique 29(1): 47 Google Scholar
  5. 5.
    Dade W.B. and Huppert H.E. (1998). Long-runout rockfalls. Geology 26: 803–806 CrossRefADSGoogle Scholar
  6. 6.
    Douady S., Andreotti B. and Daerr A. (1999). On granular surface flow equations. Eur. Phys. J. B 11: 131 CrossRefADSGoogle Scholar
  7. 7.
    Gray J.M.N.T., Wieland M. and Hutter K. (1999). Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. 445: 1841–1874 ADSMathSciNetGoogle Scholar
  8. 8.
    Iverson R.M. (1997). The physics of debris flows. Rev. Geophys. 35: 245–296 CrossRefADSGoogle Scholar
  9. 9.
    Jean, M.: Frictional Contact in Rigid or Deformable Bodies: Numerical Simulation of geomaterials. pp. 463–486. In: Salvadurai, A.P.S., Boulon, J.M. (eds.) Elsevier, Amsterdam (1995)Google Scholar
  10. 10.
    Lajeunesse E., Mangeney-Castelneau A. and Vilotte J.-P. (2004). Spreading of a granular mass on an horizontal plane. Phys. Fluids 16: 2731–2381 CrossRefGoogle Scholar
  11. 11.
    Lajeunesse E., Monnier J.B. and Homsy G.M. (2005). Granular slumping on a horizontal surface. Phys. Fluids 17: 103302 CrossRefADSGoogle Scholar
  12. 12.
    Larrieu, E., Staron, L., Hinch, E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. (in press) (2005)Google Scholar
  13. 13.
    Lube G., Huppert H.E., Sparks R.S.J. and Hallworth M.A. (2004). Axisymmetric collapses of granular columns. J. Fluid Mech. 508: 175–199 MATHCrossRefADSGoogle Scholar
  14. 14.
    Lube G., Huppert H.E., Sparks R.S.J. and Freundt A. (2005). Collapse of granular columns. Phys. Rev. E 72: 041301 CrossRefADSGoogle Scholar
  15. 15.
    Lube, G., The flow and depositional mechanisms of granular matter, PhD Thesis, University of Kiel, Germany (2006)Google Scholar
  16. 16.
    Midi G.D.R. (2004). On dense granular flows. Eur. Phys. J. E 14: 341–365 CrossRefGoogle Scholar
  17. 17.
    Moreau J.-J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 4: 93–114 MathSciNetGoogle Scholar
  18. 18.
    Pouliquen O. and Forterre Y. (2002). Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453: 133–151 MATHCrossRefADSGoogle Scholar
  19. 19.
    Rajchenbach J. (2000). Granular flows. Adv. Phys. 49(2): 229–256 CrossRefADSGoogle Scholar
  20. 20.
    Savage S. and Hutter K. (1989). The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199: 177–215 MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Staron L. and Hinch E.J. (2005). Study of the collapse of granular columns using two-dimensional discrete-grains simulation. J. Fluid Mech. 545: 1–27 MATHCrossRefADSGoogle Scholar
  22. 22.
    Zenit R. (2005). Computer simulations of the collapse of a granular column. Phys. Fluid 17: 031703 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  2. 2.Laboratoire de Modélisation en MécaniqueUniversité Pierre et Marie CurieParis Cedex 05France
  3. 3.Department of Applied Mathematics and Theoretical Physics, Center for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations