Granular Matter

, Volume 9, Issue 1–2, pp 81–86 | Cite as

Side pressure anomalies in 2D packings of frictionless spheres

Article

Abstract

The pressure in a dish filled with resting sand quickly saturates downward as a consequence of friction forces. This fact is often quoted to introduce granular material as a distinctive form of matter that exhibits behaviour rather different from that of ordinary liquids. One would expect that hydrostatics is fully recovered when friction is switched off. Here we demonstrate in a simple model system that even frictionless grains manifest unanticipated properties. First, wall induced layering in combination with a wedge effect leads to extremely large local pressures near the walls at the bottom of rectangular containers, and this feature does not vanish for diverging container width. Second, for monodisperse packings the average horizontal force is much weaker on the side walls than the hydrostatic value, but approaches the latter for increasing polydispersity. Third, the average sidewall force shows marked oscillations as a function of container width, which can be considered as a measure of wall-to-wall correlations.

Keywords

Frictionless grains Static sandpiles Hydrostatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hagen, G.H.L.: Über den Druck und die Bewegung des trocknen Sandes. In: Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuss. Akademie der Wissenschaften zu Berlin, pp. 35–42 (1852)Google Scholar
  2. 2.
    Janssen H.A. (1895). Versuche über Getreidedruck in Silozellen. Z. Ver. Deutsche. Ing. 39:1045–1049Google Scholar
  3. 3.
    Nedderman R.M. (1992). Statics and Kinematics of Granular Materials. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Vanel L., Clément E. (1999). Pressure screening and fluctuations at the bottom of a granular column. Eur. Phys. J. B 11:525–533CrossRefADSGoogle Scholar
  5. 5.
    Vanel L., Claudin Ph., Bouchaud J-Ph., Cates M.E., Clément E., Wittmer J.P. (2000). Stresses in silos: comparison between theoretical models and new experiments. Phys. Rev. Lett. 84:1439–1442CrossRefADSGoogle Scholar
  6. 6.
    Tixier M., Pitois O., Mills P. (2004). Experimental impact of the history of packing on the mean pressure in silos. Eur. Phys. J. E 14:241–247CrossRefGoogle Scholar
  7. 7.
    Gilles B., Léveque E., Laroche C., Coste Ch. (2004). Huge fluctuations in weight measurements at the bottom of a two-dimensional vertical sheet of grains. Phys. Rev. Lett. 92:204–301CrossRefGoogle Scholar
  8. 8.
    Snoeijer, J.H., van Hecke, M., Somfai, E., van Saarloos, W. Force and weight distributions in granular media: effects of contact geometry. Phys. Rev. E 67, 030302(R) (2003)Google Scholar
  9. 9.
    Snoeijer, J.H., van Hecke, M., Somfai, E., van Saarloos, W.: Packing geometry and statistics of force networks in granular media. Phys. Rev. E 70, 011301 (2004)Google Scholar
  10. 10.
    Ostojic S., Somfai E., Nienhuis B. (2006). Scale invariance and universality of force networks in static granular matter. Nature 439:828–830CrossRefADSGoogle Scholar
  11. 11.
    Dijkstra, M.: Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys. Rev. Lett. 93, 108303 (2004).Google Scholar
  12. 12.
    Buzzacchi M., Pagonabarraga I., Wilding N.B. (2004). Polydisperse hard spheres at a hard wall. J. Chem. Phys. 121:11362–11373CrossRefADSGoogle Scholar
  13. 13.
    Grodon C., Dijkstra M., Evans R., Roth R. (2005). Homogeneous and inhomogeneous hard-sphere mixtures: manifestations of structural crossover. Mol. Phys. 103:3009–3023CrossRefGoogle Scholar
  14. 14.
    The average height of a packing h̄ is defined as two times the mean of all vertical coordinates of the spheres. This quantity is quite stable in wide enough containers, for example, h̄ = 17.810 ±  0.134 for the packings in Fig. 1.Google Scholar
  15. 15.
    Coulomb C.A. (1776). Sur une application des régles maximis et minimis a quelques problémes de statique, relatifs á l’architecture. Mémoires de Mathématique et de Physique. Acad R Sci 7:343–382Google Scholar
  16. 16.
    Wieghardt K. (1975). Experiments in granular flow. Annu. Rev. Fluid Mech. 7:89–114MATHCrossRefADSGoogle Scholar
  17. 17.
    Rankine W.J.M. (1857). On the stability of loose earth. Philos. Trans. R. Soc. Lond. 147:9–27Google Scholar
  18. 18.
    Luding S. (1997). Stress distribution in static two dimensional granular model media in the absence of friction. Phys. Rev. E 55:4720–4729CrossRefADSGoogle Scholar
  19. 19.
    Goldenberg C., Goldhirsch I. (2005). Friction enhances elasticity in granular solids. Nature 435:188–191CrossRefADSGoogle Scholar
  20. 20.
    Herrmann H.J., Luding S. (1998). Modeling granular media on the computer. Continuum Mech. Thermodyn. 10:189–231MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Rosato A., Strandburg K.J., Prinz F., Swendsen R.H. (1987). Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58:1038–1041MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Baumann G., Jánosi I.M., Wolf D.E. (1994). Particle trajectories and segregation in a two-dimensional rotating drum. Europhys. Lett. 27:203–208Google Scholar
  23. 23.
    Baumann G., Jánosi I.M., Wolf D.E. (1995). Surface properties and the flow of granular material in a two-dimensional rotating-drum model. Phys. Rev. E 51:1879–1888CrossRefADSGoogle Scholar
  24. 24.
    Ouaguenouni S., Roux J-N. (1997). Force distribution in frictionless granular packings at rigidity threshold. Europhys. Lett. 39:117–122CrossRefADSGoogle Scholar
  25. 25.
    Tkachenko A.V., Witten T.A. (1999). Stress propagation through frictionless granular material. Phys. Rev. E 60:687–696CrossRefADSGoogle Scholar
  26. 26.
    Head D.E., Tkachenko A.V., Witten T.A. (2001). Robust propagation direction of stresses in a minimal granular packing. Eur. Phys. J. E 6:99–105CrossRefGoogle Scholar
  27. 27.
    Silbert, L.E., Grest, G.S., Landry, J.W. Statistics of the contact network in frictional and frictionless granular packings. Phys. Rev. E 66, 061303 (2002).Google Scholar
  28. 28.
    Goldenberg C., Goldhirsch I. (2004). Small and large scale granular statics. Granul. Matter 6:87–97CrossRefGoogle Scholar
  29. 29.
    Carson J.W., Holmes T. (2001). Silo failures: why do they happen?. Powder Bulk Eng. 15: 31–32Google Scholar
  30. 30.
    Ober, R.: Silo desigsn. Concrete Products (July 1), 23 (2002)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsLoránd Eötvös UniversityBudapestHungary

Personalised recommendations