Granular Matter

, Volume 8, Issue 3–4, pp 119–124 | Cite as

Effects of Bottleneck on Granular Convection Cells and Segregation

  • Xiang-Zhao Kong
  • Mao-Bin Hu
  • Qing-Song Wu
  • Yong-Hong Wu
Original Paper


Dry glass granular material confined to a 2D-chamber convects when it is subjected to vertical sinusoidal vibrations of sufficient intensity. Effects of the container geometry on convection pattern and segregation process are studied experimentally. Here we introduce a bottleneck into the ordinary rectangular chamber, with one sidewall bended inward, characterized by λ being the ratio of the length of the bottleneck to the length of the chamber’s base. The convection roll and segregation pattern are significantly affected by λ. For λ = 0.9, two different stabilized patterns co-exist, depending on initial granular distribution. The sloping angle of the free surface to the horizontal increases with increasing λ, and reaches its saturation at λ = 0.9. The angle of the interface of the segregation region to the horizontal also increases with increasing λ.


Bottleneck Granular material Segregation Convection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehta A., Barker G.C. (1994). The Dynamics of Sand. Phys Rep 57:383–416CrossRefGoogle Scholar
  2. 2.
    Jaeger H.M., Nagel S.R., Behringer R.P. (1996). The physics of granular materials. Phys Today 49(4):32–38CrossRefGoogle Scholar
  3. 3.
    Jullien R., Meakin P., and Pavlovitch A. (1992). 3-dimensional model for particle-size segregation by shaking. Phys Rev Lett 69:640–643CrossRefADSGoogle Scholar
  4. 4.
    Knight J.B., Jaeger H.M., Nagel S.R. (1993). Vibration-induced size separation in granular media - the convection connection. Phys Rev Lett 70:3728–3731CrossRefADSGoogle Scholar
  5. 5.
    Faraday M. (1831). On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces. Philos Trans R Soc London 52:299–340Google Scholar
  6. 6.
    Brown R.L. (1939). The fundamental principles of segregation. J Inst Fuel 13:15–19Google Scholar
  7. 7.
    Ennis B.J., Green J., Davies R. (1994). The legacy of neglect in the US. Chem Eng Prog 90:32–43Google Scholar
  8. 8.
    Knowlton T.M., Carson J.W., Klinzing G.E., Yang W.C. (1994). The importance of storage, transfer and collection. Chemical Engineering Progress 90:44–54Google Scholar
  9. 9.
    Takahashi T. (1981). Debris flow, Annu Rev Fluid Mech 13:57–77CrossRefADSGoogle Scholar
  10. 10.
    Knight J.B. (1997). External Boundaries and Internal Shear Bands in Granular Convection. Phys Rev E 55:6016–6023CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Grossman E.L. (1997). Effects of container geometry on granular convection. Phys Rev E 56:3290–3300CrossRefADSGoogle Scholar
  12. 12.
    Rosato A.D., Blackmore D.L. (eds) (2000). Iutam Symposium on Segregation in Granular Flows. Kluwer Academic, DordrechtGoogle Scholar
  13. 13.
    Williams J.C. (1963). The segregation of powders and granular materials. Fuel Soc J 14:29–34Google Scholar
  14. 14.
    Cooke M.H., Stephens D.J., Bridgwater J. (1976). Particle mixing-A literature survey, Powder Technol 15:1CrossRefGoogle Scholar
  15. 15.
    Rosato A., Strandburg K.J., Prinz F., Swendsen R.H. (1987). Why the Brazil nuts are on top: size segregation of particulate matter by shaking, Phys Rev Lett 58:1038–1040CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cooke W., Warr S., Huntley J.M., Ball R.C. (1996). Particle size segregation in a two-dimensional bed undergoing vertical vibration. Phys Rev E 53:2812–2822CrossRefADSGoogle Scholar
  17. 17.
    Rosato A.D., Blackmore D.L., Zhang N., Lan Y. (2002). A perspective on vibration-induced size segregation of granular materials. Chem Eng Sci 57:265–275CrossRefGoogle Scholar
  18. 18.
    Kudrolli A. (2004). Size separation in vibrated granular matter. Rep Prog Phys 67(3):209–247CrossRefADSGoogle Scholar
  19. 19.
    Shi Q.F., Yan X.Q., Hou M.Y., Niu X.J., Lu K.Q. (2003). Experimental study of segregation patterns in binary granular mixtures under vertical vibration. Chin Sci Bull 48:627–629Google Scholar
  20. 20.
    Brone D., Muzzio F.J. (1997). A reversible process size segregation in vibrated granular systems: A reversible process. Phys Rev E 56:1059–1063CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Xiang-Zhao Kong
    • 1
  • Mao-Bin Hu
    • 1
  • Qing-Song Wu
    • 1
  • Yong-Hong Wu
    • 2
  1. 1.School of Engineering ScienceUniversity of Science and Technology of ChinaHefeiPeoples Republic of China
  2. 2.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia

Personalised recommendations