Granular Matter

, Volume 7, Issue 2–3, pp 169–179 | Cite as

Torsion of viscoelastic spheres in contact

  • Edward Dintwa
  • Michael Van Zeebroeck
  • Engelbert Tijskens
  • Herman Ramon


The theory of elastic contact between two spherical bodies is used as a basis for an extension to include the contribution of the viscous effects to the total stress for viscoelastic spheres subjected to twisting moments. Expressions relating twisting moment to penetration of slip and penetration of slip to twist angle are derived. Two term power series truncations of the relations are then used to derive approximate expressions for torsional compliance of the bodies. Validation experiments for the extended model were performed by use of a rheometer device. Applications for the model in post-harvest agriculture include extraction of material properties for use in Discrete Element Modelling of mechanical interactions of fruits and other regular shaped produce during machine handling. A specific application is performed involving the use of a rheometer to measure the coefficient of friction for fruit-fruit contact.


Elasticity Viscoelastic spheres Torsional compliance Contact force Discrete Element Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertz, H.: J. reine und angewandte Mathematik 94, 156 (1882) (English translation in Miscellaneous Papers by H. Hertz, Eds. Jones and Schott, London, Macmillan, 1896)Google Scholar
  2. 2.
    Mindlin, R.D.: ASME J. Appl. Mech. 16, 259 (1949)Google Scholar
  3. 3.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. 2nd edn. (McGraw-Hill, New York, 1951)Google Scholar
  4. 4.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. 4th edn. (Cambridge University Press, New York, 1952)Google Scholar
  5. 5.
    Johnson, K.L.: Contact Mechanics, 2nd edn. (Cambridge University Press, New York, 1985)Google Scholar
  6. 6.
    Mindlin, R.D., Deresiewicz, H.: ASME J. Appl. Mech. 20, 327 (1953)Google Scholar
  7. 7.
    Lubkin, J.L.: ASME J.Appl. Mech. 18, 183 (1951)Google Scholar
  8. 8.
    Hetenyi, M., McDonald, J.R.: ASME J. Appl. Mech. 25, 396 (1958)Google Scholar
  9. 9.
    Lee, E.H., Radock, J.R.M.: ASME J. Appl. Mech. 27, 438 (1960)Google Scholar
  10. 10.
    Kuwabara, G., Kono, K.: Jap. J. Appl. Phys. 26, 1230 (1987)Google Scholar
  11. 11.
    Hertzsh, J.M., Spahn, F., Brilliantov, N.V.: J. Phys. II 5, 1725 (1995)Google Scholar
  12. 12.
    Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Phys. Rev. E 60, 4465 (1999)Google Scholar
  13. 13.
    Bardet, J.P., Huang, Q.: In Proceedings of the Second International Conference on Micromechanics of Granular Media, 1993, edited by C. Thornton (A.A. Balkema, Rotterdam, The Netherlands, 1993) 39Google Scholar
  14. 14.
    Iwashita, K., Oda, M.: ASCE J. Engrg. Mech. 124, 285 (1998)Google Scholar
  15. 15.
    Brilliantov, N.V., Pöschel, T.: Europhys. Lett. 42, 511 (1998)Google Scholar
  16. 16.
    Brilliantov, N.V., Pöschel, T.: Eur. Phys. J. B 12, 299 (1999)Google Scholar
  17. 17.
    Pöschel, T., Schwager, T., Brilliantov, N.V.: Eur. Phys. J. B 10, 169 (1999)Google Scholar
  18. 18.
    Tijskens, E., Ramon, H., De Baerdemaeker, J.: J. Sound Vib. 266, 493 (2003)Google Scholar
  19. 19.
    Hamann, D.D.: Trans. ASAE 13, 893 (1970)Google Scholar
  20. 20.
    Chen, P., Fridley, R.B.: Trans. ASAE 15, 1103 (1972)Google Scholar
  21. 21.
    De Baerdemaeker, J.G., Segerlind, L.J.: Trans. ASAE 19, 346 (1976)Google Scholar
  22. 22.
    Akyurt, M., Zachariah, G.L., Haugh, C.G.: Trans. ASAE 15, 766 (1972)Google Scholar
  23. 23.
    Pitt, R.E., Chen, H.L.: Trans. ASAE 26, 1275 (1983)Google Scholar
  24. 24.
    Mohsenin, N.: Physical Properties of Plant and Animal Materials, 2nd edn. (Gordon and Breach Science Publishers, New York, 1986)Google Scholar
  25. 25.
    Lu, R., Puri, V.M.: J. Rheol. 35, 1209 (1991)Google Scholar
  26. 26.
    Deresiewicz, H.: ASME J. Appl. Mech. 21, 327 (1954)Google Scholar
  27. 27.
    Boussinesq, J.: Application des potentials à l’etitude de l’équilibre et du mouvement des solides èlastiques. (Gauthier-Villars, Paris, 1885)Google Scholar
  28. 28.
    Cerruti, V.: Roma, Acc. Lincei., Mem. Fis. Mat. (1882)Google Scholar
  29. 29.
    Fung, Y.C.: A First Course in Continuum Mechanics, 3rd edn. (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1994)Google Scholar
  30. 30.
    Van Zeebroeck, M., Dintwa, E., Tijskens, E., Ramon, H.: Postharvest Biol. Technol. 33, 111 (2004)Google Scholar
  31. 31.
    Brilliantov, N.V., Spahn, F., Hertzsch, J.M.: Phys. Rev. E 53, 5382 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Edward Dintwa
    • 1
  • Michael Van Zeebroeck
    • 1
  • Engelbert Tijskens
    • 1
  • Herman Ramon
    • 1
  1. 1.Laboratorium LandbouwwerktuigkundeK.U. LeuvenLeuvenBelgium

Personalised recommendations