Granular Matter

, Volume 7, Issue 2–3, pp 69–81 | Cite as

Regimes of segregation and mixing in combined size and density granular systems: an experimental study

Article

Abstract.

Granular segregation in a rotating tumbler occurs due to differences in either particle size or density, which are often varied individually while the other is held constant. Both cases present theoretical challenges; even more challenging, however, is the case where density and size segregation may compete or reinforce each other. The number of studies addressing this situation is small. Here we present an experimental study of how the combination of size and density of the granular material affects mixing and segregation. Digital images are obtained of experiments performed in a half-filled quasi-2D circular tumbler using a bi-disperse mixture of equal volumes of different sizes of steel and glass beads. For particle size and density combinations where percolation and buoyancy both contribute to segregation, either radial streaks or a “classical” core can occur, depending on the particle size ratio. For particle combinations where percolation and buoyancy oppose one another, there is a transition between a core composed of denser beads to a core composed of smaller beads. Mixing can be achieved instead of segregation if the denser beads are also bigger and if the ratio of particle size is greater than the ratio of particle density. Temporal evolution of these segregated patterns is quantified in terms of a “segregation index” (based on the area of the segregated pattern) and a “shape index” (based on the area and perimeter of the segregated pattern).

Keywords

Granular flow Granular materials Mixing Segregation Organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lacey, P.M.: J. Appl. Chem. 4, 257 (1954)Google Scholar
  2. 2.
    Williams, J.C.: Fuel Soc. J. 14, 29 (1963)Google Scholar
  3. 3.
    Bridgwater, J.: Powder Technol. 15, 215 (1976)Google Scholar
  4. 4.
    Jaegar, H.M., Nagel, S.R.: Science 255, 1523 (1992)Google Scholar
  5. 5.
    Ristow, G.H.: Pattern formation in granular materials. (Springer, 2000)Google Scholar
  6. 6.
    Duran, J.: Sands, Powders, and Grains. (Springer Publication, 2000)Google Scholar
  7. 7.
    Ottino, J.M., Khakhar, D.V.: Ann. Rev. Fluid Mech. 32, 55 (2000)Google Scholar
  8. 8.
    Ottino, J.M.: The kinematics of mixing: stretching, chaos and transport. (Cambridge, UK: Cambridge University Press, 1989)Google Scholar
  9. 9.
    Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Phys. Rev. Lett. 58, 1038 (1987)Google Scholar
  10. 10.
    Thomas, N.: Phys. Rev. E 62, 961 (2000)Google Scholar
  11. 11.
    Huerta, D., Ruiz-Suárez, J.: Phys. Rev. Lett. 92, 114301 (2004)Google Scholar
  12. 12.
    Shinbrot, T., Muzzio, F.J.: Phys. Rev. Lett. 81, 4365 (1998)Google Scholar
  13. 13.
    Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Chaos 9, 594 (1999)Google Scholar
  14. 14.
    Rajchenbach, J.: Phys. Rev. Lett. 65, 2221 (1990)Google Scholar
  15. 15.
    Henein, H., Brimacomble, J.K., Watkinson, A.P.: Metal. Trans. B 14, 191 (1983)Google Scholar
  16. 16.
    Donald, M.B., Roseman, B.: Br. Chem. Eng. 7, 749 (1962)Google Scholar
  17. 17.
    Nityanand, N., Manley, B., Henein, H.: Metal. Trans. B 17, 247 (1986)Google Scholar
  18. 18.
    Clement, E., Rajchenbach, J., Duran, J.: Europhys. Lett. 30, 7 (1995)Google Scholar
  19. 19.
    Cantalaube, F., Bideau, D.: Europhys. Lett. 30, 133 (1995)Google Scholar
  20. 20.
    Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Phys. Fluids 9, 3600 (1997)Google Scholar
  21. 21.
    Khakhar, D.V., Orpe, A.V., Ottino, J.M.: Powder Technol. 116, 232 (2001)Google Scholar
  22. 22.
    Ristow, G.H.: Europhys. Lett. 28, 97 (1994)Google Scholar
  23. 23.
    Dury, C.M., Ristow, G.H.: J. Phys. I France 7, 737 (1997)Google Scholar
  24. 24.
    Prigozhin, L., Kalman, H.: Phys. Rev. E 57, 2073 (1998)Google Scholar
  25. 25.
    Drahun, J.A., Bridgwater, J.: Powder Technol. 36, 39 (1983)Google Scholar
  26. 26.
    Alonso, M., Satoh, M., Miyanami, K.: Powder Technol. 68, 145 (1991)Google Scholar
  27. 27.
    Metcalfe, G., Shattuck, M.: Physica A. 233, 709 (1996)Google Scholar
  28. 28.
    Jain, N., Khakhar, D.V., Lueptow, R.M., Ottino, J.M.: Phys. Rev. Lett. 86, 3771 (2001)Google Scholar
  29. 29.
    Hill, K.M., Kakalios, J.: Phys. Rev. E 49, 3610 (1994)Google Scholar
  30. 30.
    Hill, K.M., Khakhar, D.V., Gilchrist, J. F., McCarthy, J.J., Ottino, J.M.: P. Natl. Acad. Sci. USA 96, 11701 (1999)Google Scholar
  31. 31.
    Jain, N., Ottino, J.M., Lueptow, R.M.: J. Fluid Mech. 508, 23 (2004)Google Scholar
  32. 32.
    Jain, N., Ottino, J.M., Lueptow, R.M.: Phys. Fluids 14, 572 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nitin Jain
    • 1
  • Julio M. Ottino
    • 1
    • 2
  • Richard M. Lueptow
    • 2
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanston
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanston

Personalised recommendations