Granular Matter

, Volume 5, Issue 4, pp 171–175

Effects of scale and inertia on granular banding segregation

Article

Abstract.

We report that the formation of much reported axial segregation bands in rotating cylinders loaded with different sized particles depends critically on scale and inertia. Specifically, when the ratio, δ, of the diameter of the cylinder to the average diameter of the particles is large, axial bands invariably appear, when δ is small, bands never appear, and between these extremes lies a reversible state where the presence or absence of bands depends on container rotation speed. Our results indicate that banding is associated with a Rayleigh-like instability of a granular core of fine particles, and that this instability is controlled by the inertia of the larger species – and consequently on scale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Oyama, Bull. Inst. Phys. Chem. Res. (Tokyo) Rep. 5, 600 (1939), p. 1962Google Scholar
  2. 2.
    M. B. Donald & B. Roseman, Brit. Chem. Eng. 7 (1962), p. 749–53Google Scholar
  3. 3.
    S. D. Gupta, D. V. Khakhar & S. K. Bhatia, Chem. Eng. Sci. 46 (1991), p. 1513–8Google Scholar
  4. 4.
    T. Elperin & A. Vikhansky, Phys. Rev. E. 60 (1999), p. 1946–50Google Scholar
  5. 5.
    K. M. Hill, A. Caprihan & J. Kakalios, Phys. Rev. E. 56 (1997), p. 4386–93Google Scholar
  6. 6.
    K. M. Hill, A. Caprihan & J. Kakalios, Phys. Rev. Lett. 78 (1997), p. 50–3Google Scholar
  7. 7.
    D. Levine, Chaos. 9 (1999), p. 473–80Google Scholar
  8. 8.
    L. Prigozhin & H. Kalman, Phys. Rev. E. 57 (1998), p. 2073–80Google Scholar
  9. 9.
    J. Stavans, J. Stat. Phys. 93 (1998), p. 467–75Google Scholar
  10. 10.
    K. M. Hill & J. Kakalios, Phys. Rev. E. 52 (1995), p. 4393–400Google Scholar
  11. 11.
    J. Bridgwater, Trans. Instn. Chem. Engrs. 49 (1971), p. 163–9Google Scholar
  12. 12.
    A. M. Scott & J. Bridgewater, Ind. Eng. Chem. 14 (1975), p. 22–7Google Scholar
  13. 13.
    N. Nakagawa, S. A. Altobelli, A. Caprihan & E. Fukushima, Chem. Eng. Sci. 52~(1997),~p. 4423–8Google Scholar
  14. 14.
    W. K. Lee & R. W. Flumerfelt, Int. J. Multiphase Flow 7 (1981), p. 363–81Google Scholar
  15. 15.
    A. W. Alexander, T. Shinbrot & F. J. Muzzio, Phys. Fluids. 13 (2001), p. 578–87Google Scholar
  16. 16.
    D. V. Khakhar, J. J. McCarthy, T. Shinbrot & J. M. Ottino, Phys. Fluids 9 (1997), p. 31–43Google Scholar
  17. 17.
    J. M. N. T. Gray, J. Fluid Mech. 441 (2001), p. 1–29Google Scholar
  18. 18.
    A. W. Alexander, T Shinbrot & F. J. Muzzio, Phys. Fluids A 13 (2001), p. 578–87Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations