Chinese Journal of Mechanical Engineering

, Volume 30, Issue 2, pp 419–427 | Cite as

Calibration of Discrete Element Heat Transfer Parameters by Central Composite Design

  • Zongquan DENG
  • Jinsheng CUI
  • Xuyan HOU
  • Shengyuan JIANG
Original Article


The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.


Granular assembly Parameter calibration Effective thermal conductivity (ETC) Discrete element method (DEM) Central composite design (CCD) Vacuum 


  1. 1.
    TIAN Y, TANG D W, DENG Z Q, et al. Drilling power consumption and soil conveying volume performances of lunar sampling auger[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3): 451–459.Google Scholar
  2. 2.
    CUI J S, HOU X Y, ZHAO D M. Experimental research on temperature rise of bit in drilling normal and low temperature lunar soil simulant[J]. Applied Mechanics and Materials, 2013, 373: 2008–2014.Google Scholar
  3. 3.
    YASUNOBU K, TAKEO S, MASAYUKI H. DEM simulation of fluidized beds for gas-phase olefin polymerization[J]. Chemical Engineering Science, 1999, 54(24): 5809–5821.Google Scholar
  4. 4.
    LI J, MASON D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles[J]. Powder Technology, 2000, 112(3): 273–282.Google Scholar
  5. 5.
    VARGAS W L, MCCARTHY J J. Heat conduction in granular materials[J]. AICHE Journal, 2001, 47(5): 1052–1059.Google Scholar
  6. 6.
    VARGAS W L, MCCARTHY J J. Stress effects on the Conductivity of particulate beds[J]. Chemical Engineering Science, 2002, 57(15): 3119–3131.Google Scholar
  7. 7.
    VARGAS W L, MCCARTHY J J. Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4847–4856.Google Scholar
  8. 8.
    VARGAS W L, MCCARTHY J J. Thermal expansion effects and heat conduction in granular materials[J]. Physical Review E, 2007, 76(4): 041301.1–041301.8.Google Scholar
  9. 9.
    CHAUDHURI B, MUZZIO F J, TOMASSONE M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science, 2006, 61(19): 6348–6360.Google Scholar
  10. 10.
    Chaudhuri B, Muzzio F J, Tomassone M S. Experimentally validated computations of heat transfer in granular materials in rotary calciners[J]. Powder Technology, 2010, 198(1): 6–15.Google Scholar
  11. 11.
    SHI D, VARGAS W L, MCCARTHY, J J. Heat transfer in rotary kilns with interstitial gases[J]. Chemical Engineering Science, 2008, 63(18): 4506–4516.Google Scholar
  12. 12.
    NGUYEN V D, COGNE C, GUESSASMA M, et al. Discrete modeling of granular flow with thermal transfer: Application to the discharge of silos[J]. Applied Thermal Engineering, 2009, 29(8): 1846–1853.Google Scholar
  13. 13.
    YUN T S, EVANS T M. Three-dimensional random network model for thermal conductivity in particulate materials[J]. Computers and Geotechnics, 2010, 37(7-8): 991–998.Google Scholar
  14. 14.
    ZHANG H W, ZHOU Q, XING H L, et al. A DEM study on the effective thermal conductivity of granular assemblies[J]. Powder Technology, 2011, 205(1-3): 172–183.Google Scholar
  15. 15.
    ZHOU Q, ZHANG H W, ZHENG Y G. A homogenization technique for heat transfer in periodic granular materials[J]. Advanced Powder Technology, 2012, 23(1): 104–114.Google Scholar
  16. 16.
    COETZEE C J, ELS D N J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling[J]. Computers and Electronics in Agriculture, 2009, 65(2): 198–212.Google Scholar
  17. 17.
    CAO M Y, DONG G J, ZHAO C C. Research on pressure-transfer characteristics in the solid granulemedium forming based on the discrete element method[J]. Journal of Mechanical Engineering, 2011, 47(14): 62–69.Google Scholar
  18. 18.
    COETZEE C J, ELS D N J, DYMOND G F. Discrete element parameter calibration and the modelling of dragline bucket filling[J]. Journal of Terramechanics, 2010, 47(1): 33–44.Google Scholar
  19. 19.
    FRANKOWSKI P, MORGENEYER M. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements[C]//Proceedings of the 7th International Conference on Micromechanics of Granular Media, Sydney, Australia, July 8–12, 2013: 851–854.Google Scholar
  20. 20.
    YOON J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International journal of Rock Mechanics and Mining Sciences, 2007, 44 (6): 871–889.Google Scholar
  21. 21.
    FAVIER J, CURRY D, LAROCHE R. Calibration of DEM material models to approximate bulk particle characteristics[C]//6th World Congress on Particle Technology, Nuremberg, Germany, April 26–29, 2010.Google Scholar
  22. 22.
    JOHNSTONE M, OOI J. Calibration of DEM models using rotating drum and confined compression measurements[C]//6th World Congress on Particle Technology, Nuremberg, Germany, April 26–29, 2010.Google Scholar
  23. 23.
    HANLEY K J, O’SULLIVAN C, OLIVEIRA J C, et al. Application of Taguchi methods to DEM calibration of bonded agglomerates[J]. Powder Technology, 2011, 210(3): 230–240.Google Scholar
  24. 24.
    GIUSEPPE D R. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary and Space Science, 1995, 43(6): 835-842.Google Scholar
  25. 25.
    YANG S M, TAO W Q. Heat Transfer[M]. 4th edition. Beijing: High Education Press, 2006. (in Chinese).Google Scholar
  26. 26.
    ZHANG T, AN Y H, DING X L. The design of vacuum test device and the study of pumping method about lunar soil simulants[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2110–2115. (in Chinese).Google Scholar
  27. 27.
    DRAPER N R, LIN D K J. Small Response-Surface Designs[J]. Technometrics, 1990, 32(2): 187–194.Google Scholar

Copyright information

© Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zongquan DENG
    • 1
  • Jinsheng CUI
    • 1
  • Xuyan HOU
    • 1
  • Shengyuan JIANG
    • 1
  1. 1.Department of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations