Advertisement

Scene text detection and recognition with advances in deep learning: a survey

  • Xiyan Liu
  • Gaofeng MengEmail author
  • Chunhong Pan
Original Paper
  • 225 Downloads

Abstract

Scene text detection and recognition has become a very active research topic in recent several years. It can find many applications in reality ranging from navigation for vision-impaired people to semantic natural scene understanding. In this survey, we are intended to give a thorough and in-depth reviews on the recent advances on this topic, mainly focusing on the methods that appeared in the past 5 years for text detection and recognition in images and videos, including the recent state-of-the-art techniques on the following three related topics: (1) scene text detection, (2) scene text recognition and (3) end-to-end text recognition system. Compared with the previous survey, this survey pays more attention to the application of deep learning techniques on scene text detection and recognition. We also give a brief introduction of other related works such as script identification, text/non-text classification and text-to-image retrieval. This survey also reviews and summarizes some benchmark datasets that are widely used in the literature. Based on these datasets, performances of state-of-the-art approaches are shown and discussed. Finally, we conclude this survey by pointing out several potential directions on scene text detection and recognition that need to be well explored in the future.

Keywords

Natural image Text detection Text recognition Survey 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61370039, and the Beijing Natural Science Foundation under Grant L172053.

References

  1. 1.
    Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Asian Conference on Computer Vision, pp. 770–783. Springer (2010)Google Scholar
  2. 2.
    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: 2010 IEEE Conference on CVPR, pp. 2963–2970. IEEE (2010)Google Scholar
  3. 3.
    Yin, X.C., Yin, X., Huang, K., Hao, H.W.: Robust text detection in natural scene images. IEEE Trans. PAMI 36(5), 970–983 (2014)Google Scholar
  4. 4.
    Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: 2012 IEEE Conference on CVPR, pp. 3538–3545. IEEE (2012)Google Scholar
  5. 5.
    Cho, H., Sung, M., Jun, B.: Canny text detector: fast and robust scene text localization algorithm. In: CVPR, pp. 3566–3573 (2016)Google Scholar
  6. 6.
    Busta, M., Neumann, L., Matas, J.: Fastext: efficient unconstrained scene text detector. In: ICCV, pp. 1206–1214 (2015)Google Scholar
  7. 7.
    Zhong, Y., Zhang, H., Jain, A.K.: Automatic caption localization in compressed video. IEEE Trans. PAMI 22(4), 385–392 (2000)Google Scholar
  8. 8.
    Hanif, S.M., Prevost, L., Negri, P.: A cascade detector for text detection in natural scene images. In: ICPR, pp. 1–4 (2008)Google Scholar
  9. 9.
    Hanif, S.M., Prevost, L.: Text detection and localization in complex scene images using constrained adaboost algorithm. In: ICDAR’09, pp. 1–5. IEEE (2009)Google Scholar
  10. 10.
    Zhang, Z., Shen, W., Yao, C., Bai, X.: Symmetry-based text line detection in natural scenes. In: CVPR, pp. 2558–2567 (2015)Google Scholar
  11. 11.
    Liang, G., Shivakumara, P., Lu, T., Tan, C.L.: A new wavelet-laplacian method for arbitrarily-oriented character segmentation in video text lines. In: ICDAR’15, pp. 926–930. IEEE (2015)Google Scholar
  12. 12.
    Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced mser trees. In: ECCV, pp. 497–511. Springer (2014)Google Scholar
  13. 13.
    Zhong, Z., Sun, L., Huo, Q.: Improved localization accuracy by locnet for faster r-cnn based text detection. In: DICDAR’17, vol. 1, pp. 923–928. IEEE (2017)Google Scholar
  14. 14.
    Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., Bai, X.: Multi-oriented text detection with fully convolutional networks. In: CVPR, pp. 4159–4167 (2016)Google Scholar
  15. 15.
    Zhu, S., Zanibbi, R.: A text detection system for natural scenes with convolutional feature learning and cascaded classification. In: CVPR, pp. 625–632 (2016)Google Scholar
  16. 16.
    Qin, S., Manduchi, R.: Cascaded segmentation-detection networks for word-level text spotting. arXiv preprint arXiv:1704.00834 (2017)
  17. 17.
    Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: CVPR, pp. 2315–2324 (2016)Google Scholar
  18. 18.
    Tang, Y., Wu, X.: Scene text detection and segmentation based on cascaded convolution neural networks. IEEE Trans. Image Process. 26(3), 1509–1520 (2017)zbMATHGoogle Scholar
  19. 19.
    Wang, C., Yin, F., Liu, C.L.: Scene text detection with novel superpixel based character candidate extraction. In: ICDAR’17, vol. 1, pp. 929–934. IEEE (2017)Google Scholar
  20. 20.
    Turki, H., Halima, M.B., Alimi, A.M.: Text detection based on mser and cnn features. In: ICDAR’17, vol. 1, pp. 949–954. IEEE (2017)Google Scholar
  21. 21.
    Tian, S., Pan, Y., Huang, C., Lu, S., Yu, K., Lim Tan, C.: Text flow: a unified text detection system in natural scene images. In: ICCV, pp. 4651–4659 (2015)Google Scholar
  22. 22.
    Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with connectionist text proposal network. In: ECCV, pp. 56–72. Springer (2016)Google Scholar
  23. 23.
    He, T., Huang, W., Qiao, Y., Yao, J.: Text-attentional convolutional neural network for scene text detection. IEEE Trans. Image Process. 25(6), 2529–2541 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fabrizio, J., Robert-Seidowsky, M., Dubuisson, S., Calarasanu, S., Boissel, R.: Textcatcher: a method to detect curved and challenging text in natural scenes. IJDAR 19(2), 99–117 (2016)Google Scholar
  25. 25.
    Pei, W.Y., Yang, C., Kau, L.J., Yin, X.C.: Multi-orientation scene text detection with multi-information fusion. In: ICPR, pp. 657–662. IEEE (2016)Google Scholar
  26. 26.
    Yin, X.C., Pei, W.Y., Zhang, J., Hao, H.W.: Multi-orientation scene text detection with adaptive clustering. IEEE Trans. PAMI 37(9), 1930–1937 (2015)Google Scholar
  27. 27.
    Kang, L., Li, Y., Doermann, D.: Orientation robust text line detection in natural images. In: CVPR, pp. 4034–4041 (2014)Google Scholar
  28. 28.
    Gomez, L., Karatzas, D.: Textproposals: a text-specific selective search algorithm for word spotting in the wild. Pattern Recognit. 70, 60–74 (2017)Google Scholar
  29. 29.
    Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J.: East: an efficient and accurate scene text detector. arXiv preprint arXiv:1704.03155 (2017)
  30. 30.
    Shi, B., Bai, X., Belongie, S.: Detecting oriented text in natural images by linking segments. In: CVPR, vol. 3 (2017)Google Scholar
  31. 31.
    Liu, Y., Jin, L.: Deep matching prior network: toward tighter multi-oriented text detection. In: CVPR, vol. 2, p. 8 (2017)Google Scholar
  32. 32.
    Sheshadri, K., Divvala, S.K.: Exemplar driven character recognition in the wild. In: BMVC, pp. 1–10 (2012)Google Scholar
  33. 33.
    Shi, C., Wang, C., Xiao, B., Zhang, Y., Gao, S., Zhang, Z.: Scene text recognition using part-based tree-structured character detection. In: CVPR, pp. 2961–2968. IEEE (2013)Google Scholar
  34. 34.
    Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T., Wu, D.J., Ng, A.Y.: Text detection and character recognition in scene images with unsupervised feature learning. In: ICDAR’11, pp. 440–445. IEEE (2011)Google Scholar
  35. 35.
    Yao, C., Bai, X., Shi, B., Liu, W.: Strokelets: a learned multi-scale representation for scene text recognition. In: CVPR, pp. 4042–4049 (2014)Google Scholar
  36. 36.
    Lee, C.Y., Bhardwaj, A., Di, W., Jagadeesh, V., Piramuthu, R.: Region-based discriminative feature pooling for scene text recognition. In: CVPR, pp. 4050–4057 (2014)Google Scholar
  37. 37.
    Lou, X., Kansky, K., Lehrach, W., Laan, C., Marthi, B., Phoenix, D., George, D.: Generative shape models: joint text recognition and segmentation with very little training data. In: NIPS, pp. 2793–2801 (2016)Google Scholar
  38. 38.
    Liang, G., Shivakumara, P., Lu, T., Tan, C.L.: Multi-spectral fusion based approach for arbitrarily oriented scene text detection in video images. IEEE Trans. Image Process. 24(11), 4488–4501 (2015)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Elagouni, K., Garcia, C., Mamalet, F., Sébillot, P.: Combining multi-scale character recognition and linguistic knowledge for natural scene text OCR. In: 2012 10th IAPR International Workshop on Document Analysis Systems (DAS), pp. 120–124. IEEE (2012)Google Scholar
  40. 40.
    Phan, T.Q., Shivakumara, P., Tian, S., Tan, C.L.: Recognizing text with perspective distortion in natural scenes. In: ICCV, pp. 569–576. IEEE (2013)Google Scholar
  41. 41.
    Weinman, J.J., Butler, Z., Knoll, D., Feild, J.: Toward integrated scene text reading. IEEE Trans. PAMI 36(2), 375–387 (2014)Google Scholar
  42. 42.
    Su, B., Lu, S.: Accurate scene text recognition based on recurrent neural network. In: ACCV, pp. 35–48. Springer (2014)Google Scholar
  43. 43.
    Ghosh, S.K., Valveny, E., Bagdanov, A.D.: Visual attention models for scene text recognition. arXiv preprint arXiv:1706.01487 (2017)
  44. 44.
    Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: CVPR, pp. 4168–4176 (2016)Google Scholar
  45. 45.
    Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for OCR in the wild. In: CVPR, pp. 2231–2239 (2016)Google Scholar
  46. 46.
    He, P., Huang, W., Qiao, Y., Loy, C.C., Tang, X.: Reading scene text in deep convolutional sequences. AAAI 16, 3501–3508 (2016)Google Scholar
  47. 47.
    Yang, X., He, D., Zhou, Z., Kifer, D., Giles, C.L.: Learning to read irregular text with attention mechanisms. In: IJCAI, pp. 3280–3286 (2017)Google Scholar
  48. 48.
    Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. PAMI 39(11), 2298–2304 (2017)Google Scholar
  49. 49.
    Neumann, L., Matas, J.: Scene text localization and recognition with oriented stroke detection. In: ICCV, pp. 97–104 (2013)Google Scholar
  50. 50.
    Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In: ECCV, pp. 512–528. Springer (2014)Google Scholar
  51. 51.
    Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. IJCV 116(1), 1–20 (2016)MathSciNetGoogle Scholar
  52. 52.
    Neumann, L., Matas, J.: Efficient scene text localization and recognition with local character refinement. In: ICDAR’15, pp. 746–750. IEEE (2015)Google Scholar
  53. 53.
    Neumann, L., Matas, J.: Real-time lexicon-free scene text localization and recognition. IEEE Trans. PAMI 38(9), 1872–1885 (2016)Google Scholar
  54. 54.
    Yao, C., Bai, X., Liu, W.: A unified framework for multioriented text detection and recognition. IEEE Trans. Image Process. 23(11), 4737–4749 (2014)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: Textboxes: a fast text detector with a single deep neural network. In: AAAI, pp. 4161–4167 (2017)Google Scholar
  56. 56.
    Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. PAMI 37(7), 1480–1500 (2015)Google Scholar
  57. 57.
    Zhu, Y., Yao, C., Bai, X.: Scene text detection and recognition: recent advances and future trends. Front. Comput. Sci. 10(1), 19–36 (2016)Google Scholar
  58. 58.
    Yin, X.C., Zuo, Z.Y., Tian, S., Liu, C.L.: Text detection, tracking and recognition in video: a comprehensive survey. IEEE Trans. Image Process. 25(6), 2752–2773 (2016)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Weinman, J.J.: Unified Detection and Recognition for Reading Text in Scene Images. University of Massachusetts Amherst, Amherst (2008)Google Scholar
  60. 60.
    Field, J.: Improving text recognition in images of natural scenes. PhD thesis, University of Massachusetts Amherst (2014)Google Scholar
  61. 61.
    Jaderberg, M.: Deep learning for text spotting. PhD thesis (2015)Google Scholar
  62. 62.
    Mishra, A.: Understanding Text in Scene Images. PhD thesis, International Institute of Information Technology Hyderabad (2016)Google Scholar
  63. 63.
    Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: Photoocr: Reading text in uncontrolled conditions. In: ICCV, pp. 785–792. IEEE (2013)Google Scholar
  64. 64.
    Pan, Y.F., Hou, X., Liu, C.L.: Text localization in natural scene images based on conditional random field. In: ICDAR’09, pp. 6–10. IEEE (2009)Google Scholar
  65. 65.
    Pan, Y.F., Hou, X., Liu, C.L.: A hybrid approach to detect and localize texts in natural scene images. IEEE Trans. Image Process. 20(3), 800–813 (2011)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Wang, Y., Shi, C., Xiao, B., Wang, C.: Mrf based text binarization in complex images using stroke feature. In: ICDAR’15, pp. 821–825. IEEE (2015)Google Scholar
  67. 67.
    Koo, H.I., Cho, N.I.: Text-line extraction in handwritten chinese documents based on an energy minimization framework. IEEE Trans. Image Process. 21(3), 1169–1175 (2012)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Mishra, A., Alahari, K., Jawahar, C.: Top-down and bottom-up cues for scene text recognition. In: CVPR, pp. 2687–2694. IEEE (2012)Google Scholar
  69. 69.
    Sharma, N., Mandal, R., Sharma, R., Roy, P.P., Pal, U., Blumenstein, M.: Multi-lingual text recognition from video frames. In: ICDAR’15, pp. 951–955. IEEE (2015)Google Scholar
  70. 70.
    Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8, 679–698 (1986)Google Scholar
  71. 71.
    Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989)Google Scholar
  72. 72.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI 11(7), 674–693 (1989)zbMATHGoogle Scholar
  73. 73.
    Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia (1992)zbMATHGoogle Scholar
  74. 74.
    Jung, K., Kim, K.I., Jain, A.K.: Text information extraction in images and video: a survey. Pattern Recognit. 37(5), 977–997 (2004)Google Scholar
  75. 75.
    Zuo, Z.Y., Tian, S., Pei, W.Y., Yin, X.C.: Multi-strategy tracking based text detection in scene videos. In: ICDAR’15, pp. 66–70. IEEE (2015)Google Scholar
  76. 76.
    Tian, S., Yin, X.C., Su, Y., Hao, H.W.: A unified framework for tracking based text detection and recognition from web videos. IEEE Trans. PAMI 40(3), 542–554 (2018)Google Scholar
  77. 77.
    Shivakumara, P., Phan, T.Q., Tan, C.L.: A laplacian approach to multi-oriented text detection in video. IEEE Trans. PAMI 33(2), 412–419 (2011)Google Scholar
  78. 78.
    Yousfi, S., Berrani, S.A., Garcia, C.: Deep learning and recurrent connectionist-based approaches for arabic text recognition in videos. In: ICDAR’15, pp. 1026–1030. IEEE (2015)Google Scholar
  79. 79.
    Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: CVPR, pp. 1083–1090. IEEE (2012)Google Scholar
  80. 80.
    Nicolaou, A., Bagdanov, A.D., Gómez, L., Karatzas, D.: Visual script and language identification. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 393–398. IEEE (2016)Google Scholar
  81. 81.
    Shi, B., Bai, X., Yao, C.: Script identification in the wild via discriminative convolutional neural network. Pattern Recognit. 52, 448–458 (2016)Google Scholar
  82. 82.
    Gomez, L., Nicolaou, A., Karatzas, D.: Improving patch-based scene text script identification with ensembles of conjoined networks. Pattern Recognit. 67, 85–96 (2017)Google Scholar
  83. 83.
    Sharma, N., Mandal, R., Sharma, R., Pal, U., Blumenstein, M.: ICDAR 2015 competition on video script identification (cvsi 2015). In: ICDAR’15, pp. 1196–1200. IEEE (2015)Google Scholar
  84. 84.
    Delaye, A., Liu, C.L.: Contextual text/non-text stroke classification in online handwritten notes with conditional random fields. Pattern Recognit. 47(3), 959–968 (2014)Google Scholar
  85. 85.
    Van Phan, T., Nakagawa, M.: Text/non-text classification in online handwritten documents with recurrent neural networks. In: ICFHR, pp. 23–28. IEEE (2014)Google Scholar
  86. 86.
    Sharma, N., Shivakumara, P., Pal, U., Blumenstein, M., Tan, C.L.: Piece-wise linearity based method for text frame classification in video. Pattern Recognit. 48(3), 862–881 (2015)Google Scholar
  87. 87.
    Bai, X., Shi, B., Zhang, C., Cai, X., Qi, L.: Text/non-text image classification in the wild with convolutional neural networks. Pattern Recognit. 66, 437–446 (2017)Google Scholar
  88. 88.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)Google Scholar
  89. 89.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognit. 33(2), 225–236 (2000)Google Scholar
  90. 90.
    Yi, C., Tian, Y.: Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification. IEEE Trans. Image Process. 21(9), 4256–4268 (2012)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Howe, N.R.: Document binarization with automatic parameter tuning. IJDAR 16(3), 247–258 (2013)Google Scholar
  92. 92.
    Zhang, Z., Wang, W.: A novel approach for binarization of overlay text. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4259–4264. IEEE (2013)Google Scholar
  93. 93.
    Tensmeyer, C., Martinez, T.: Document image binarization with fully convolutional neural networks. arXiv preprint arXiv:1708.03276 (2017)
  94. 94.
    Peng, X., Cao, H., Natarajan, P.: Using convolutional encoder–decoder for document image binarization. In: ICDAR’17, vol. 1, pp. 708–713. IEEE (2017)Google Scholar
  95. 95.
    Meng, G., Yuan, K., Wu, Y., Xiang, S., Pan, C.: Deep networks for degraded document image binarization through pyramid reconstruction. In: ICDAR’17, vol. 1, pp. 727–732. IEEE (2017)Google Scholar
  96. 96.
    Ha, J.W., Lee, B.J., Zhang, B.T.: Text-to-image retrieval based on incremental association via multimodal hypernetworks. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3245–3250. IEEE (2012)Google Scholar
  97. 97.
    Mishra, A., Alahari, K., Jawahar, C.: Image retrieval using textual cues. In: ICCV, pp. 3040–3047. IEEE (2013)Google Scholar
  98. 98.
    Karaoglu, S., Tao, R., Gevers, T., Smeulders, A.W.M.: Words matter: scene text for image classification and retrieval. IEEE Trans. Multimed. 19(5), 1063–1076 (2017)Google Scholar
  99. 99.
    Rong, X., Yi, C., Tian, Y.: Unambiguous text localization and retrieval for cluttered scenes. In: CVPR, pp. 3279–3287. IEEE (2017)Google Scholar
  100. 100.
    Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: ICDAR 2003 robust reading competitions. In: ICDAR’03, pp. 682–687. IEEE (2003)Google Scholar
  101. 101.
    Lucas, SM.: ICDAR 2005 text locating competition results. In: ICDAR’05, pp. 80–84. IEEE (2005)Google Scholar
  102. 102.
    Shahab, A., Shafait, F., Dengel, A.: ICDAR 2011 robust reading competition challenge 2: reading text in scene images. In: ICDAR’11, pp. 1491–1496. IEEE (2011)Google Scholar
  103. 103.
    Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L.G., Mestre, S.R., Mas, J., Mota, D.F., Almazan, J.A., de las Heras, L.P.: ICDAR 2013 robust reading competition. In: ICDAR’13, pp. 1484–1493. IEEE (2013)Google Scholar
  104. 104.
    Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: ICDAR 2015 competition on robust reading. In: ICDAR’15, pp. 1156–1160. IEEE (2015)Google Scholar
  105. 105.
    Veit, A., Matera, T., Neumann, L., Matas, J., Belongie, S.: Coco-text: Dataset and benchmark for text detection and recognition in natural images. arXiv preprint arXiv:1601.07140 (2016)
  106. 106.
    Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC, BMVA (2012)Google Scholar
  107. 107.
    Campos, T.E.D., Babu, B.R., Varma, A.M.: Character Recognition in Natural Images. Chapman & Hall, Boca Raton (2009)Google Scholar
  108. 108.
    SeongHun, L., Min Su, C., Kyomin, J., Jin Hyung, K.: Scene text extraction with edge constraint and text collinearity. In: 2010 20th International Conference on Pattern Recognition, pp. 3983–3986. IEEE (2010)Google Scholar
  109. 109.
    Yi, C., Tian, Y.: Text string detection from natural scenes by structure-based partition and grouping. IEEE Trans. Image Process. 20(9), 2594–2605 (2011)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Ch’ng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 935–942. IEEE (2017)Google Scholar
  111. 111.
    Shi, B., Yao, C., Liao, M., Yang, M., Xu, P., Cui, L., Belongie, S., Lu, S., Bai, X.: ICDAR 2017 competition on reading chinese text in the wild (rctw-17). arXiv preprint arXiv:1708.09585 (2017)
  112. 112.
    Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41(18), 8027–8048 (2014)Google Scholar
  113. 113.
    Wolf, C., Jolion, J.M.: Object count/area graphs for the evaluation of object detection and segmentation algorithms. IJDAR 8(4), 280–296 (2006)Google Scholar
  114. 114.
    Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.L Focusing attention: towards accurate text recognition in natural images. In: ICCV, pp. 5086–5094. IEEE (2017)Google Scholar
  115. 115.
    Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Deep structured output learning for unconstrained text recognition. In: ICLR (2015)Google Scholar
  116. 116.
    Alsharif, O., Pineau, J.: End-to-end text recognition with hybrid hmm maxout models. arXiv preprint arXiv:1310.1811 (2013)
  117. 117.
    Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: ICCV, pp. 1457–1464. IEEE (2011)Google Scholar
  118. 118.
    Li, H., Wang, P., Shen, C.: Towards end-to-end text spotting with convolutional recurrent neural networks. In: Proc. ICCV, pp. 5238–5246 (2017)Google Scholar
  119. 119.
    Hu, H., Zhang, C., Luo, Y., Wang, Y., Han, J., Ding, E.: Wordsup: exploiting word annotations for character based text detection. In: ICCV (2017)Google Scholar
  120. 120.
    He, W., Zhang, X.Y., Yin, F., Liu, C.L.: Deep direct regression for multi-oriented scene text detection. arXiv preprint arXiv:1703.08289 (2017)
  121. 121.
    He, P., Huang, W., He, T., Zhu, Q., Qiao, Y., Li, X.: Single shot text detector with regional attention. In: ICCV (2017)Google Scholar
  122. 122.
    Busta, M., Neumann, L., Matas, J.: Deep textspotter: an end-to-end trainable scene text localization and recognition framework. In: ICCV, pp. 22–29 (2017)Google Scholar
  123. 123.
    Wu, Y., Natarajan, P.: Self-organized text detection with minimal post-processing via border learning. In: CVPR, pp. 5000–5009 (2017)Google Scholar
  124. 124.
    Gordo, A.: Supervised mid-level features for word image representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2956–2964 (2015)Google Scholar
  125. 125.
    Almazan, J., Gordo, A., Fornes, A., Valveny, E.: Word spotting and recognition with embedded attributes. IEEE Trans. PAMI 36(12), 2552–2566 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations