Advertisement

Texture feature benchmarking and evaluation for historical document image analysis

  • Maroua Mehri
  • Pierre Héroux
  • Petra Gomez-Krämer
  • Rémy Mullot
Original Paper

Abstract

The use of different texture-based methods is pervasive in different subfields and tasks of document image analysis (DIA) and particularly in historical DIA (HDIA). Nevertheless, faced with a large diversity of texture-based methods used for HDIA, few questions arise. Which texture methods are firstly well suited for segmenting graphical contents from textual ones, discriminating various text fonts and scales, and separating different types of graphics? Then, which texture-based method represents a constructive compromise between the performance and the computational cost? Thus, in this article a benchmarking of the most classical and widely used texture-based feature sets has been conducted using a classical texture-based pixel-labeling scheme on a large corpus of historical documents to have satisfactory and clear answers to the above questions. We focus on determining the performance of each texture-based feature set according to the document content. The results reported in this study provide firstly a qualitative measure of which texture-based feature sets are the most appropriate and secondly a useful benchmark in terms of performance and computational cost for current and future research efforts in HDIA.

Keywords

Benchmarking Texture Pixel-labeling Historical document image analysis 

Notes

Acknowledgements

This study was supported by the French national research agency (ANR), under Grant ANR-10-CORD-0020, which is gratefully acknowledged. The authors would like also to thank Geneviève Cron and Christos Papadopoulos for providing access to the Gallica digital library\(^{1}\) and IMPACT dataset\(^{2}\), respectively.

References

  1. 1.
    Antonacopoulos, A., Bridson, D., Papadopoulos, C., Pletschacher, S.: A realistic dataset for performance evaluation of document layout analysis. In: International Conference on Document Analysis and Recognition, pp. 296–300 (2009)Google Scholar
  2. 2.
    Antonacopoulos, A., Clausner, C., Papadopoulos, C., Pletschacher, S.: Historical document layout analysis competition. In: International Conference on Document Analysis and Recognition, pp. 1516–1520 (2011)Google Scholar
  3. 3.
    Antonacopoulos, A., Clausner, C., Papadopoulos, C., Pletschacher, S.: ICDAR 2013 competition on historical book recognition (HBR 2013). In: International Conference on Document Analysis and Recognition, pp. 1459–1463 (2013)Google Scholar
  4. 4.
    Antonacopoulos, A., Gatos, B., Bridson, D.: Page segmentation competition. In: International Conference on Document Analysis and Recognition, pp. 1279–1283 (2007)Google Scholar
  5. 5.
    Asi, A., Cohen, R., Kedem, K., El-Sana, J., Dinstein, I.: A coarse-to-fine approach for layout analysis of ancient manuscripts. In: International Conference on Frontiers in Handwriting Recognition, pp. 140–145 (2014)Google Scholar
  6. 6.
    Baird, H.S.: Digital libraries and document image analysis. In: International Conference on Document Analysis and Recognition, pp. 2–14 (2003)Google Scholar
  7. 7.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. In: Pattern Analysis and Machine Intelligence, pp. 1798–1828 (2013)Google Scholar
  8. 8.
    Beyerer, J., León, F.P., Frese, C.: Texture analysis. In: Machine Vision, pp. 649–683 (2016)Google Scholar
  9. 9.
    Bhowmik, T.K., Kar, M.: Text localization in historical document images with local binary patterns and variance models. In: Lecture Notes in Computer Science—Pattern Recognition and Machine Intelligence, pp. 501–508 (2013)Google Scholar
  10. 10.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. In: Pattern Analysis and Machine Intelligence, pp. 55–73 (1990)Google Scholar
  11. 11.
    Busch, A., Boles, W.W., Sridharan, S.: Texture for script identification. In: Pattern Analysis and Machine Intelligence, pp. 1720–1732 (2005)Google Scholar
  12. 12.
    Campbell, F.W., Robson, J.G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968)CrossRefGoogle Scholar
  13. 13.
    Chen, C.H., Pau, L.F., Wang, P.: Texture Analysis in the Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific, Singapore (1998)Google Scholar
  14. 14.
    Chen, J., Cao, H., Prasad, R., Bhardwaj, A., Natarajan, P.: Gabor features for offline Arabic handwriting recognition. In: International Workshop on Document Analysis Systems, pp. 53–58 (2010)Google Scholar
  15. 15.
    Chen, K., Wei, H., Hennebert, J., Ingold, R., Liwicki, M.: Page segmentation for historical handwritten document images using color and texture features. In: International Conference on Frontiers in Handwriting Recognition, pp. 488–493 (2014)Google Scholar
  16. 16.
    Chen, K., Wei, H., Liwicki, M., Hennebert, J., Ingold, R.: Robust text line segmentation for historical manuscript images using color and texture. In: International Conference on Pattern Recognition, pp. 2978–2983 (2014)Google Scholar
  17. 17.
    Cinque, L., Lombardi, L., Manzini, G.: A multiresolution approach for page segmentation. In: Pattern Recognition Letters, pp. 217–225 (1998)Google Scholar
  18. 18.
    Coppi, D., Grana, C., Cucchiara, R.: Illustrations segmentation in digitized documents using local correlation features. Procedia Comput. Sci. 38, 76–83 (2014)CrossRefGoogle Scholar
  19. 19.
    Cote, M., Albu, A.B.: Texture sparseness for pixel classification of business document images. Int. J. Doc. Anal. Recognit. 17, 257–273 (2014)CrossRefGoogle Scholar
  20. 20.
    Coustaty, M., Raveaux, R., Ogier, J.M.: Historical document analysis: a review of French projects and open issues. In: European Signal Processing Conference, pp. 1445–1449 (2011)Google Scholar
  21. 21.
    Cruz-Fernández, F., Ramos-Terrades, O.: Document segmentation using relative location features. In: International Conference on Pattern Recognition, pp. 1562–1565 (2012)Google Scholar
  22. 22.
    Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Optical Soc. Am. A 2, 1160–1169 (1985)CrossRefGoogle Scholar
  23. 23.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  24. 24.
    DuBuf, J.M.H., Kardan, M., Spann, M.: Texture feature performance for image segmentation. Pattern Recognit. 23, 291–309 (1990)CrossRefGoogle Scholar
  25. 25.
    Eglin, V., Bres, S., Rivero, C.: Hermite and Gabor transforms for noise reduction and handwriting classification in ancient manuscripts. Int. J. Doc. Anal. Recognit. 9, 101–122 (2007)CrossRefGoogle Scholar
  26. 26.
    Ferrer, M.A., Morales, A., Pal, U.: LBP based line-wise script identification. In: International Conference on Document Analysis and Recognition, pp. 369–373 (2013)Google Scholar
  27. 27.
    Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93, 429–441 (1946)Google Scholar
  28. 28.
    Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975)CrossRefGoogle Scholar
  29. 29.
    Garz, A., Sablatnig, R.: Multi-scale texture-based text recognition in ancient manuscripts. In: International Conference on Virtual Systems and Multimedia, pp. 336–339 (2010)Google Scholar
  30. 30.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognit 39, 317–327 (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Grana, C., Serra, G., Manfredi, M., Coppi, D., Cucchiara, R.: Layout analysis and content enrichment of digitized books. Multimedia Tools Appl. 75, 1–22 (2014)Google Scholar
  32. 32.
    Haralick, R.M.: Statistical and structural approaches to texture. In: Proceedings of the IEEE, pp. 786–804 (1979)Google Scholar
  33. 33.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  34. 34.
    Harwood, D., Ojala, T., Pietikäinen, M., Kelman, S., Davis, L.: Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions. Pattern Recognit. Lett. 16, 971–987 (1995)Google Scholar
  35. 35.
    He, J., Do, Q.D.M., Downton, A.C., Kim, J.H.: A comparison of binarization methods for historical archive documents. In: International Conference on Document Analysis and Recognition, pp. 538–542 (2005)Google Scholar
  36. 36.
    Hebert, D., Paquet, T., Nicolas, S.: Continuous CRF with multi-scale quantization feature functions application to structure extraction in old newspaper. In: International Conference on Document Analysis and Recognition, pp. 493–497 (2011)Google Scholar
  37. 37.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. Pattern Anal. Mach. Intell. 22, 4–37 (2000)CrossRefGoogle Scholar
  38. 38.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24, 1167–1186 (1991)CrossRefGoogle Scholar
  39. 39.
    Jain, A.K., Zhong, Y.: Page segmentation using texture analysis. Pattern Recognit. 29, 743–770 (1996)CrossRefGoogle Scholar
  40. 40.
    Journet, N., Ramel, J., Mullot, R., Eglin, V.: Document image characterization using a multiresolution analysis of the texture: application to old documents. Int. J. Doc. Anal. Recognit. 11, 9–18 (2008)CrossRefGoogle Scholar
  41. 41.
    Keysers, D., Shafait, F., Breuel, T.M.: Document image zone classification—a simple high-performance approach. In: International Conference on Computer Vision Theory and Applications, pp. 44–51 (2007)Google Scholar
  42. 42.
    Kise, K.: Page segmentation techniques in document analysis. In: Handbook of Document Image Processing and Recognition, pp. 135–175 (2014)Google Scholar
  43. 43.
    Kricha, A., Amara, N.E.B.: Exploring textural analysis for historical documents characterization. J. Comput. 3, 24–30 (2011)Google Scholar
  44. 44.
    Kumar, S., Gupta, R., Khanna, N., Chaudhury, S., Joshi, S.D.: Text extraction and document image segmentation using matched wavelets and MRF model. IEEE Trans. Image Process. 16, 2117–2128 (2007)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp. 282–289 (2001)Google Scholar
  46. 46.
    Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies 1. Hierarchical systems. Comput. J. 9, 373–380 (1967)Google Scholar
  47. 47.
    Li, J., Gray, R.M.: Context-based multiscale classification of document images using wavelet coefficient distributions. IEEE Trans. Image Process. 9, 1604–1616 (2000)CrossRefGoogle Scholar
  48. 48.
    Lin, M., Tapamo, J., Ndovie, B.: A texture-based method for document segmentation and classification. South African Comput. J. 36, 49–56 (2006)Google Scholar
  49. 49.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal. Mach. Intell. 11, 674–693 (1989)CrossRefMATHGoogle Scholar
  50. 50.
    Mehri, M., Gomez-Krämer, P., Héroux, P., Boucher, A., Mullot, R.: Texture feature evaluation for segmentation of historical document images. In: International Workshop on Historical Document Imaging and Processing, pp. 102–109 (2013)Google Scholar
  51. 51.
    Mehri, M., Gomez-Krämer, P., Héroux, P., Boucher, A., Mullot, R.: A texture-based pixel labeling approach for historical books. Pattern Anal. Appl. 1–40 (2015)Google Scholar
  52. 52.
    Mehri, M., Kieu, V.C., Mhiri, M., Héroux, P., Gomez-Krämer, P., Mahjoub, M.A., Mullot, R.: Robustness assessment of texture features for the segmentation of ancient documents. In: International Workshop on Document Analysis Systems, pp. 293–297 (2014)Google Scholar
  53. 53.
    Mehri, M., Mhiri, M., Héroux, P., Gomez-Krämer, P., Mahjoub, M.A., Mullot, R.: Performance evaluation and benchmarking of six texture-based feature sets for segmenting historical documents. In: International Conference on Pattern Recognition, pp. 2885–2890 (2014)Google Scholar
  54. 54.
    Mikkilineni, A.K., Chiang, P.J., Ali, G.N., Chiu, G.T.C., Allebach, J.P., III, E.J.D.: Printer identification based on graylevel co-occurrence features for security and forensic applications. In: Security, Steganography, and Watermarking of Multimedia Contents VII, pp. 430–440 (2005)Google Scholar
  55. 55.
    Mouats, K., Journet, N., Mullot, R.: Segmentation floue d’images de documents anciens par approche texture utilisant le filtre de Gabor. In: International Conference on Image and Signal Processing (2006)Google Scholar
  56. 56.
    Nguyen, G., Coustaty, M., Ogier, J.M.: Stroke feature extraction for lettrine indexing. In: International Conference on Image Processing Theory Tools and Applications, pp. 355–360 (2010)Google Scholar
  57. 57.
    Nicolaou, A., Slimane, F., Märgner, V., Liwicki, M.: Local binary patterns for Arabic optical font recognition. In: International Workshop on Document Analysis Systems, pp. 76–80 (2014)Google Scholar
  58. 58.
    Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N.: Segmentation of historical machine-printed documents using adaptive run-length smoothing and skeleton segmentation paths. Image Vis. Comput. 28, 590–604 (2010)CrossRefGoogle Scholar
  59. 59.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Anal. Mach. Intell. 24, 971–987 (2002)Google Scholar
  60. 60.
    Okun, O., Pietikäinen, M.: A survey of texture-based methods for document layout analysis. In: Workshop on Texture Analysis in Machine Vision, pp. 137–148 (1999)Google Scholar
  61. 61.
    Otsu, N.: A threshold selection method from gray-level histograms. Syst. Man Cybern. 9, 62–66 (1979)Google Scholar
  62. 62.
    Petrou, M., Sevilla, P.G.: Image Processing: Dealing with Texture. Wiley, Boston (2006)CrossRefGoogle Scholar
  63. 63.
    Romero, V., Fornés, A., Serrano, N., Sánchez, J.A., Toselli, A.H., Frinken, V., Vidal, E., Lladós, J.: The ESPOSALLES database: an ancient marriage license corpus for off-line handwriting recognition. Pattern Recognit. 46, 1658–1669 (2013)CrossRefGoogle Scholar
  64. 64.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000)CrossRefGoogle Scholar
  65. 65.
    Serrano, N., Castro, F., Juan, A.: The RODRIGO database. In: International Conference on Language Resources and Evaluation, pp. 2709–2712 (2010)Google Scholar
  66. 66.
    Seuret, M., Liwicki, M., Ingold, R.: Pixel level handwritten and printed content discrimination in scanned documents. In: International Conference on Frontiers in Handwriting Recognition, pp. 423–428 (2014)Google Scholar
  67. 67.
    Shafait, F., Keysers, D., Breuel, T.M.: Performance evaluation and benchmarking of six-page segmentation algorithms. Pattern Anal. Mach. Intell. 30, 941–954 (2008)CrossRefGoogle Scholar
  68. 68.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. Syst. Man Cybern. 8, 460–473 (1978)CrossRefGoogle Scholar
  69. 69.
    Tang, X.: Texture information in run-length matrices. Image Process. 7, 1602–1609 (1998)CrossRefGoogle Scholar
  70. 70.
    Tuceryan, M., Jain, A.K.: Texture segmentation using Voronoi polygons. Pattern Anal. Mach. Intell. 12, 211–216 (1990)CrossRefGoogle Scholar
  71. 71.
    Uttama, S., Loonis, P., Delalandre, M., Ogier, J.M.: Segmentation and retrieval of ancient graphic documents. In: International Workshop on Graphics Recognition, pp. 88–98 (2006)Google Scholar
  72. 72.
    Villegas, M., Romero, V., Sánchez, J.A.: On the modification of binarization algorithms to retain grayscale information for handwritten text recognition. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 208–215 (2015)Google Scholar
  73. 73.
    Wang, D., Srihari, S.N.: Page segmentation and classification. Comput Vis. Graph. Image Process. 54, 327–352 (1989)CrossRefGoogle Scholar
  74. 74.
    Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recognit. 23, 905–910 (1990)CrossRefGoogle Scholar
  75. 75.
    Wechsler, H.: Texture analysis–a survey. Signal Process. 2, 271–282 (1980)CrossRefGoogle Scholar
  76. 76.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. Syst. Man Cybern. 6, 269–285 (1976)CrossRefMATHGoogle Scholar
  77. 77.
    Zhu, Y., Tan, T., Wang, Y.: Font recognition based on global texture analysis. Pattern Anal. Mach. Intell. 23, 1192–1200 (2001)CrossRefGoogle Scholar
  78. 78.
    Tuceryan, M.: Moment based texture segmentation. Pattern Recognit. Lett. 15, 659–668 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Normandie Univ, UNIROUEN,UNIHAVRE, INSA Rouen, LITISRouenFrance
  2. 2.L3i EA 2118University of La RochelleLa RochelleFrance

Personalised recommendations